Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Impacts of human-wild boar interactions on agricultural and natural vegetation: Challenges, management strategies and future perspectives

DOI
https://doi.org/10.14719/pst.8206
Submitted
12 March 2025
Published
26-06-2025 — Updated on 01-07-2025
Versions

Abstract

Human-wild boar (Sus scrofa) interactions have intensified globally due to habitat loss, increasing boar populations and human encroachment into wildlife areas. Wild boars, highly adaptable and prolific, pose significant challenges to agriculture, public safety and ecosystem balance. They cause extensive crop damage, transmit zoonotic diseases and disrupt ecological processes. Their high reproductive rate and lack of natural predators have further exacerbated interactions. Various management strategies, including culling, fencing, repellents and contraceptive methods, have been employed to mitigate human-wild boar interactions, yet challenges remain in balancing ecological conservation and economic interests. Sustainable coexistence requires a multi-faceted approach integrating modern technologies such as GPS tracking, drones and AI-driven analytics with traditional control measures. Public awareness, policy support and community engagement are crucial in developing effective mitigation strategies. This review examines the causes, impacts and management strategies of human-wild boar interactions while highlighting the need for innovative and integrated approaches to reduce conflict and ensure sustainable coexistence between humans and wildlife.

References

  1. 1. Wilson DE, Wilson DE, Mittermeier RA. Handbook of the mammals of the world, volume 2: hoofed mammals. Barcelona, Spain: Lynx Ediciones; 2011.
  2. 2. Barrios-Garcia MN, Ballari SA. Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biological Invasions. 2012;14:2283-300. https://doi.org/10.1007/s10530-012-0229-6
  3. 3. Long JL. Introduced mammals of the world: their history, distribution, and influence. CSIRO publishing; 2003 Aug 14.
  4. 4. Lewis JS, Farnsworth ML, Burdett CL, Theobald DM, Gray M, Miller RS. Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Scientific Reports. 2017;7(1):44152. https://doi.org/10.1038/srep44152
  5. 5. Keuling O, Leus K. Sus scrofa. The IUCN Red List of Threatened Species 2019:e.T41775A44141833.
  6. 6. Jhala YV, Qureshi Q, Nayak AK. Status of tigers, co-predators, and prey in India. National Tiger Conservation Authority, Government of India, and Wildlife Institute of India, Dehradun, India; 2020.
  7. 7. Geisser H, Reyer HU. Efficacy of hunting, feeding, and fencing to reduce crop damage by wild boars. The Journal of Wildlife Management. 2004;68(4):939-46. https://doi.org/10.2193/0022-541X(2004)068[0939:EOHFAF]2.0.CO;2
  8. 8. Podgórski T, Baś G, Jędrzejewska B, Sönnichsen L, Śnieżko S, Jędrzejewski W, et al. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: primeval forest and metropolitan area. Journal of Mammalogy. 2013;94(1):109-19. https://doi.org/10.2307/23488602
  9. 9. Schmidt M, Sommer K, Kriebitzsch WU, Ellenberg H, von Oheimb G. Dispersal of vascular plants by game in northern Germany. Part I: Roe deer (Capreolus capreolus) and wild boar (Sus scrofa). European Journal of Forest Research. 2004;123:167-76.https://doi.org/10.1007/s10342-004-0029-3
  10. 10. Murphy MJ, Inman-Narahari F, Ostertag R, Litton CM. Invasive feral pigs impact native tree ferns and woody seedlings in Hawaiian forest. Biological Invasions. 2014;16:63-71. https://doi.org/10.1007/s10530-013-0503-2
  11. 11. Schley L, Dufrêne M, Krier A, Frantz AC. Patterns of crop damage by wild boar (Sus scrofa) in Luxembourg over a 10-year period. European Journal of Wildlife Research. 2008;54(4):589-99. http://dx.doi.org/10.5539/jas.v4n5p61
  12. 12. Bueno CG, Alados CL, Gómez‐García D, Barrio IC, García‐González R. Understanding the main factors in the extent and distribution of wild boar rooting on alpine grasslands. Journal of Zoology. 2009;279(2):195-202. https://doi.org/10.1111/j.1469-7998.2009.00607.x
  13. 13. Meng XJ, Lindsay DS, Sriranganathan N. Wild boars as sources for infectious diseases in livestock and humans. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009;364(1530):2697-707. https://doi.org/10.1098/rstb.2009.0086
  14. 14. Strickland BK, Smith MD, Smith AL. Wild pig damage to resources. In: VerCauteren KC, Mayer JJ, Beasley JC, Ditchkoff SS, Roloff GJ, Strickland BK, editors. Invasive wild pigs in North America. Ecology, impacts, and management. Boca Raton (FL): CRC Press; 2020. p 143-74.
  15. 15. McDonough MT, Ditchkoff SS, Smith MD, Vercauteren KC. A review of the impacts of invasive wild pigs on native vertebrates. Mammalian Biology. 2022;102:279-90.
  16. 16. Sales LP, Ribeiro BR, Hayward MW, Paglia A, Passamani M, Loyola R. Niche conservatism and the invasive potential of the wild boar. Journal of Animal Ecology. 2017;86(5):1214-23. https://doi.org/10.1111/1365-2656.12721
  17. 17. Schley L, Roper TJ. Diet of wild boar Sus scrofa in Western Europe, with particular reference to consumption of agricultural crops. Mammal Review. 2003;33(1):43-56.
  18. 18. Baubet ER, Bonenfant C, Brandt SE. Diet of the wild boar in the French Alps. Galemys. 2004;16(1):101-13.
  19. 19. Massei G, Genov PV. The environmental impact of wild boar. Galemys. 2004;16(1):135-45.
  20. 20. Mathur VB, Bist SS, Kaushik M, Mungi NA, Qureshi Q. Management of human-wildlife interaction and invasive species in India. Report number (TR-2015/004), Wildlife Institute of India, Dehradun; 2015. https://doi.org/10.13140/RG.2.2.35522. 58565
  21. 21. Milda D, Ramesh T, Kalle R, Gayathri V, Thanikodi M, Ashish K. Factors driving human–wild pig interactions: implications for wildlife conflict management in southern parts of India. Biological Invasions. 2023;25(1):221-35. https://doi.org/10.1007/s10530-022-02911-6
  22. 22. Tisdell CA. Wild pigs: environmental pest or economic resource? Elsevier; 2013 Oct 22.
  23. 23. Bevins SN, Pedersen K, Lutman MW, Gidlewski T, Deliberto TJ. Consequences associated with the recent range expansion of nonnative feral swine. BioScience. 2014;64(4):291-9. https://doi.org/10.1093/biosci/biu015
  24. 24. Vetter SG, Ruf T, Bieber C, Arnold W. What is a mild winter? Regional differences in within-species responses to climate change. PLoS One. 2015;10(7):e0132178. https://doi.org/10.1371/journal.pone.0132178
  25. 25. Crooks JA. Characterizing ecosystem‐level consequences of biological invasions: the role of ecosystem engineers. Oikos. 2002;97(2):153-66. https://doi.org/10.1034/j.1600-0706.2002.970201.x
  26. 26. Servanty S, Gaillard JM, Ronchi F, Focardi S, Baubet E, Gimenez O. Influence of harvesting pressure on demographic tactics: implications for wildlife management. Journal of Applied Ecology. 2011;48(4):835-43. https://doi.org/10.1111/j.1365-2664.2011.02017.x
  27. 27. Boughton EH, Boughton RK. Modification by an invasive ecosystem engineer shifts a wet prairie to a monotypic stand. Biological Invasions. 2014;16:2105-14. https://doi.org/10.1007/s10530-014-0650-0
  28. 28. Bankovich B, Boughton E, Boughton R, Avery ML, Wisely SM. Plant community shifts caused by feral swine rooting devalue Florida rangeland. Agriculture, Ecosystems & Environment. 2016;220:45-54. https://doi.org/10.1016/j.agee.2015.12.027
  29. 29. Senthilkumar K, Mathialagan P, Manivannan C, Gomathinayagam S, Jayathangaraj MG. Human-wild pig conflict: a case study in Tamil Nadu State of India. International Journal of Science, Environment and Technology. 2020;9:148-52.
  30. 30. Khan S, Gupta S, Ilyas O, Haleem A, Roy A. Evaluation of suitable habitat for wild boar (Sus scrofa) in Pench Tiger Reserve, Madhya Pradesh, India. International Journal of Ecology and Environmental Sciences. 2019;45(2):157-64.
  31. 31. Paviolo A, De Angelo CD, Di Blanco YE, Di Bitetti MS. Jaguar Panthera onca population decline in the upper Paraná Atlantic forest of Argentina and Brazil. Oryx. 2008;42(4):554-61. https://doi.org/10.1017/S0030605308000641
  32. 32. Pandav B, Natarajan L, Kumar A, Desai AA, Lyngkhoi B. Household perceptions and patterns of crop loss by wild pigs in north India. Human-Wildlife Interactions. 2021;15:12. https://doi.org/10.26077/6944-07b4
  33. 33. Pimentel D, Zuniga R, Morrison D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics. 2005;52(3):273-88. https://doi.org/10.1016/j.ecolecon.2004.10.002
  34. 34. McKee S, Anderson A, Carlisle K, Shwiff SA. Economic estimates of invasive wild pig damage to crops in 12 US states. Crop protection. 2020;132:105105. https://doi.org/10.1016/j.cropro.2020.105105
  35. 35. Anderson A, Slootmaker C, Harper E, Holderieath J, Shwiff SA. Economic estimates of feral swine damage and control in 11 US states. Crop Protection. 2016;89:89-94. https://doi.org/10.1016/j.cropro.2016.06.023
  36. 36. Piekarczyk P, Tajchman K, Belova O, Wojcik M. Crop damage by wild boar (Sus scrofa L.) depending on the crop composition in Central-Eastern Poland. Baltic Forestry. 2021;27(1). https://doi.org/10.46490/BF552
  37. 37. Muthoka CM, Andren H, Nyaga J, Augustsson E, Kjellander P. Effect of supplemental feeding on habitat and crop selection by wild boar in Sweden. Ethology Ecology & Evolution. 2023;35(1):106-24. https://doi.org/10.1080/03949370.2021.2024265
  38. 38. Dunkell DO, Bruland GL, Evensen CI, Walker MJ. Effects of feral pig (Sus scrofa) exclusion on enterococci in runoff from the forested headwaters of a Hawaiian watershed. Water, Air, & Soil Pollution. 2011;221:313-26.
  39. 39. Krull CR, Choquenot D, Burns BR, Stanley MC. Feral pigs in a temperate rainforest ecosystem: disturbance and ecological impacts. Biological Invasions. 2013;15:2193-204. https://doi.org/10.1007/s10530-013-0444-9
  40. 40. van Doormaal N, Ohashi H, Koike S, Kaji K. Influence of human activities on the activity patterns of Japanese sika deer (Cervus nippon) and wild boar (Sus scrofa) in Central Japan. European Journal of Wildlife Research. 2015;61:517-27. https://doi.org/10.1007/s10344-015-0922-8
  41. 41. Chauhan NP, Barwal KS, Kumar D. Human-wild pig conflict in selected states in India and mitigation strategies. Acta Silvatica et Lignaria Hungarica: An International Journal in forest, wood and Environmental sciences. 2009;5:189-97. https://doi.org/10.37045/aslh-2009-0016
  42. 42. Herrero J, García-Serrano A, Couto S, Ortuño VM, García-González R. Diet of wild boar Sus scrofa L. and crop damage in an intensive agroecosystem. European Journal of Wildlife Research. 2006;52:245-50. https://doi.org/10.1007/s10344-006-0045-3
  43. 43. Saito M, Momose H, Mihira T. Both environmental factors and countermeasures affect wild boar damage to rice paddies in Boso Peninsula, Japan. Crop Protection. 2011;30(8):1048-54. https://doi.org/10.1016/j.cropro.2011.02.017
  44. 44. Ditchkoff SS, Mayer JJ. Wild pig food habits. Wild pigs: biology, damage, control techniques, and management. Aiken (SC): Savanna River National Laboratory; 2009. p. 105-43.
  45. 45. Desbiez AL, Santos SA, Keuroghlian A, Bodmer RE. Niche partitioning among white-lipped peccaries (Tayassu pecari), collared peccaries (Pecari tajacu), and feral pigs (Sus scrofa). Journal of Mammalogy. 2009;90(1):119-28. https://doi.org/10.1644/08-MAMM-A-038.1
  46. 46. Giménez-Anaya A, Herrero J, Rosell C, Couto S, García-Serrano A. Food habits of wild boars (Sus scrofa) in a Mediterranean coastal wetland. Wetlands. 2008;28:197-203. https://doi.org/10.1672/07-18.1
  47. 47. Seward NW, VerCauteren KC, Witmer GW, Engeman RM. Feral swine impacts on agriculture and the environment. Sheep & Goat Research Journal. 2004:12.
  48. 48. de la Fuente J, Naranjo V, Ruiz-Fons F, Vicente J, Estrada-Peña A, Almazán C, et al. Prevalence of tick-borne pathogens in ixodid ticks (Acari: Ixodidae) collected from European wild boar (Sus scrofa) and Iberian red deer (Cervus elaphus hispanicus) in central Spain. European Journal of Wildlife Research. 2004;50(4):187-96. https://doi.org/10.1007/s10344-004-0060-1
  49. 49. Gortázar C, Acevedo P, Ruiz-Fons F, Vicente J. Disease risks and overabundance of game species. European Journal of Wildlife Research. 2006;52:81-7. https://doi.org/10.1007/s10344-005-0022-2
  50. 50. Browning CA. A preliminary examination of the effects of feral pigs (Sus scrofa) on water quality and soil loss within a Hawaiian watershed. Doctoral Dissertation; 2008.
  51. 51. Senserini D, Santilli F. Potential impact of wild boar (Sus scrofa) on pheasant (Phasianus colchicus) nesting success. Wildlife Biology in Practice. 2016;12(1):15-20. https://doi.org/10.2461/wbp.2016.12.4
  52. 52. Sauter-Louis C, Conraths FJ, Probst C, Blohm U, Schulz K, Sehl J, et al. African swine fever in wild boar in Europe—A review. Viruses. 2021;13(9):1717. https://doi.org/10.3390/v13091717
  53. 53. Oja R. Consequences of supplementary feeding of wild boar: concern for ground-nesting birds and endoparasite infection. Doctoral dissertation, Universitatis Tartuensis.
  54. 54. Fordham D, Georges A, Corey B, Brook BW. Feral pig predation threatens the indigenous harvest and local persistence of snake-necked turtles in northern Australia. Biological Conservation. 2006;133(3):379-88. https://doi.org/10.1016/j.biocon.2006.07.001
  55. 55. Fulgione D, Buglione M. The boar war: five hot factors unleashing boar expansion and related emergency. Land. 2022;11(6):887. https://doi.org/10.3390/land11060887
  56. 56. Bolds SA, Lockaby BG, Kalin L, Ditchkoff SS, Smith MD, VerCauteren KC. Wild pig removal reduces pathogenic bacteria in low-order streams. Biological Invasions. 2022;24(5):1453-63.
  57. 57. Napoletano P, Barbarisi C, Maselli V, Rippa D, Arena C, Volpe MG, et al. Quantifying the immediate response of soil to wild boar (Sus scrofa L.) grubbing in Mediterranean olive orchards. Soil Systems. 2023;7(2):38.
  58. 58. Elsey RM, Mouton EC, Kinler N. Effects of feral swine (Sus scrofa) on alligator (Alligator mississippiensis) nests in Louisiana. Southeastern Naturalist. 2012;11(2):205-18. https://doi.org/10.1656/058.011.0204
  59. 59. Ballari SA, Barrios‐García MN. A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges. Mammal Review. 2014;44(2):124-34. https://doi.org/10.1111/mam.12015
  60. 60. Siemann E, Carrillo JA, Gabler CA, Zipp R, Rogers WE. Experimental test of the impacts of feral hogs on forest dynamics and processes in the southeastern US. Forest Ecology and Management. 2009;258(5):546-53. https://doi.org/10.1016/j.foreco.2009.03.056
  61. 61. Sanguinetti J, Kitzberger T. Factors controlling seed predation by rodents and non-native Sus scrofa in Araucaria araucana forests: potential effects on seedling establishment. Biological Invasions. 2010;12:689-706. https://doi.org/10.1007/s10530-009-9474-8
  62. 62. Setter M, Bradford M, Dorney B, Lynes B, Mitchell J, Setter S, et al. Pond apple: are the endangered cassowary and feral pig helping this weed to invade Queensland’s wet tropics. In: Proc. Aust. Weeds Conf 2002 Nov 6. Vol. 13. p. 173-6.
  63. 63. Long MS, Litton CM, Giardina CP, Deenik J, Cole RJ, Sparks JP. Impact of nonnative feral pig removal on soil structure and nutrient availability in Hawaiian tropical montane wet forests. Biological Invasions. 2017;19:749-63. https://doi.org/10.1007/s10530-017-1368-6
  64. 64. Cini A, Benetello F, Platania L, Bordoni A, Boschi S, Franci E, et al. A sunny spot: habitat management through vegetation cuts increases oviposition in abandoned fields in an endemic Mediterranean butterfly. Insect Conservation and Diversity. 2021;14(5):582-96. https://doi.org/10.1111/icad.12489
  65. 65. Ferretti F, Lazzeri L, Mori E, Cesaretti G, Calosi M, Burrini L, et al. Habitat correlates of wild boar density and rooting along an environmental gradient. Journal of Mammalogy. 2021;102(6):1536-47. https://doi.org/10.1093/jmammal/gyab095
  66. 66. Risch AC, Wirthner S, Busse MD, Page-Dumroese DS, Schütz M. Grubbing by wild boars (Sus scrofa L.) and its impact on hardwood forest soil carbon dioxide emissions in Switzerland. Oecologia. 2010;164:773-84. https://doi.org/10.1007/s00442-010-1665-6
  67. 67. Wirthner S, Frey B, Busse MD, Schütz M, Risch AC. Effects of wild boar (Sus scrofa L.) rooting on the bacterial community structure in mixed-hardwood forest soils in Switzerland. European Journal of Soil Biology. 2011;47(5):296-302. https://doi.org/10.1016/j.ejsobi.2011.07.003
  68. 68. Mitchell J, Dorney W, Mayer R, McIlroy JJ. Ecological impacts of feral pig diggings in north Queensland rainforests. Wildlife Research. 2007;34(8):603-8. https://doi.org/10.1071/WR06065
  69. 69. Kaller MD, Kelso WE. Swine activity alters invertebrate and microbial communities in a coastal plain watershed. The American Midland Naturalist. 2006;156(1):163-77. https://doi.org/10.1674/0003-0031(2006)156[163:SAAIAM]2.0.CO;2
  70. 70. Bongi P, Tomaselli M, Petraglia A, Tintori D, Carbognani M. Wild boar impact on forest regeneration in the northern Apennines (Italy). Forest Ecology and Management. 2017;391:230-8. https://doi.org/10.1016/j.foreco.2017.02.028
  71. 71. Heinken T, Schmidt M, Von Oheimb G, Kriebitzsch WU, Ellenberg H. Soil seed banks near rubbing trees indicate dispersal of plant species into forests by wild boar. Basic and Applied Ecology. 2006;7(1):31-44. https://doi.org/10.1016/j.baae.2005.04.006
  72. 72. Vanschoenwinkel B, Waterkeyn A, Vandecaetsbeek TI, Pineau O, Grillas P, Brendonck LU. Dispersal of freshwater invertebrates by large terrestrial mammals: a case study with wild boar (Sus scrofa) in Mediterranean wetlands. Freshwater Biology. 2008;53(11):2264-73. https://doi.org/10.1111/j.1365-2427.2008.02071.x
  73. 73. Wehr NH, Litton CM, Lincoln NK, Hess SC. Relationships between soil macroinvertebrates and nonnative feral pigs (Sus scrofa) in Hawaiian tropical montane wet forests. Biological Invasions. 2020;22(2):577-86. https://doi.org/10.1007/s10530-019-02117-3
  74. 74. Calosi M, Gabbrielli C, Lazzeri L, Fattorini N, Cesaretti G, Burrini L, et al. Seasonal and ecological determinants of wild boar rooting on priority protected grasslands. Environmental Management. 2024;74(2):268-81. https://doi.org/10.1007/s00267-024-01952-y
  75. 75. Campbell TA, Long DB. Feral swine damage and damage management in forested ecosystems. Forest Ecology and Management. 2009;257(12):2319-26. https://doi.org/10.1016/j.foreco.2009.03.036
  76. 76. Massei G, Roy S, Bunting R. Too many hogs? A review of methods to mitigate impact by wild boar and feral hogs. Human-Wildlife Interactions. 2011;5(1):79-99.
  77. 77. Frackowiak W, Gorczyca S, Merta D, Wojciuch‐Ploskonka M. Factors affecting the level of damage by wild boar in farmland in north‐eastern Poland. Pest Management Science. 2013;69(3):362-6. https://doi.org/10.1002/ps.3368
  78. 78. Rao NS, Kumar KP, Sakthivel P. Efficacy of botanical repellents against wild boar in field crops. Green Farming. 2019;10(3):368-71.
  79. 79. Bargavi S, Baranidharan K, Divya MP, Radha P, Vijayabhama M. Preliminary survey on the Indian wild boar damage in agricultural lands using ITKs in adjoining Tiger reserve of Tamil Nadu, India. The Pharma Innovation Journal. 2022;SP-11(7):349-52. https://doi.org/10.22271/tpi.2022.v11.i7Se.13673
  80. 80. Liu Q, Yan K, Lu YF, Li M, Yan YY. Conflict between wild boars (Sus scrofa) and farmers: distribution, impacts, and suggestions for management of wild boars in the Three Gorges Reservoir Area. Journal of Mountain Science. 2019;16(10):2404-16. https://doi.org/10.1007/s11629-019-5453-4
  81. 81. Ens EJ, Daniels C, Nelson E, Roy J, Dixon P. Creating multi-functional landscapes: Using exclusion fences to frame feral ungulate management preferences in remote Aboriginal-owned northern Australia. Biological Conservation. 2016;197:235-46. https://doi.org/10.1016/j.biocon.2016.03.007
  82. 82. Naik MI, Basavadarshan AV. Incidence and efficacy of crop protection measures against wild boar (Sus scrofa L.) in groundnut (Arachis hypogaea L.). Journal of Entomology and Zoology Studies. 2020;8:1616-20.
  83. 83. Muralidharan K, Eswari S, Vijayarani K. Expression of growth differentiation factor-9 from buffalo follicular fluid–a marker gene for fecundity. Dr. C. Balachandran. 2020;49(2):14-9.
  84. 84. Vidrih M, Trdan S. Evaluation of different designs of temporary electric fence systems for the protection of maize against wild boar (Sus scrofa L., Mammalia, Suidae). Acta Agriculturae Slovenica. 2008;91(2):343-9. https://doi.org/10.14720/aas.2008.91.2.15405
  85. 85. Bengsen AJ, Gentle MN, Mitchell JL, Pearson HE, Saunders GR. Impacts and management of wild pigs Sus scrofa in Australia. Mammal Review. 2014;44(2):135-47. https://doi.org/10.1111/mam.12011
  86. 86. Schlageter A, Haag-Wackernagel D. A gustatory repellent for protection of agricultural land from wild boar damage: an investigation on effectiveness. Journal of Agricultural Science. 2012;4(5):61. https://doi.org/10.5539/jas.v4n5p61
  87. 87. Kamsano NS, Sohaili J, Supian NS, Muniyandi SK, Din MF. The use of human hair in green technology to reduce human-wild hog conflict from the agricultural perspective. In: MATEC Web of Conferences 2018. Vol. 250. EDP Sciences. p. 06003. https://doi.org/10.1051/matecconf/201825006003
  88. 88. Cowled BD, Elsworth P, Lapidge SJ. Additional toxins for feral pig (Sus scrofa) control: identifying and testing Achilles’ heels. Wildlife Research. 2008;35(7):651-62.https://doi.org/10.1071/WR07072
  89. 89. Lapidge S, Wishart J, Smith M, Staples L. Is America ready for a humane feral pig toxicant? WDMC; 2009.
  90. 90. Quy RJ, Massei G, Lambert MS, Coats J, Miller LA, Cowan DP. Effects of a GnRH vaccine on the movement and activity of free-living wild boar (Sus scrofa). Wildlife Research. 2014;41(3):185-93. https://doi.org/10.1071/WR14035
  91. 91. Keiter DA, Beasley JC. Hog heaven? Challenges of managing introduced wild pigs in natural areas. Natural Areas Journal. 2017;37(1):6-16. http://dx.doi.org/10.3375/043.037.0117
  92. 92. Massei G, Kindberg J, Licoppe A, Gačić D, Šprem N, Kamler J, et al. Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Management Science. 2015;71(4):492-500. https://doi.org/10.1002/ps.3965
  93. 93. Campbell TA, Long DB, Leland BR. Feral swine behavior relative to aerial gunning in southern Texas. The Journal of Wildlife Management. 2010; 74(2):337-41. https://doi.org/10.2193/2009-131
  94. 94. Campbell TA, Foster JA, Bodenchuk MJ, Eisemann JD, Staples L, Lapidge SJ. Effectiveness and target-specificity of a novel design of food dispenser to deliver a toxin to feral swine in the United States. International Journal of Pest Management. 2013;59(3):197-204. https://doi.org/10.1080/09670874.2013.815830
  95. 95. Snow NP, Halseth JM, Lavelle MJ, Hanson TE, Blass CR, Foster JA, et al. Bait preference of free-ranging feral swine for delivery of a novel toxicant. PLoS One. 2016;11(1):e0146712. https://doi.org/10.1371/journal.pone.0146712
  96. 96. Delgado-Acevedo JH. Feral pig management in southern Texas: a landscape genetics approach. Texas A&M University-Kingsville; 2010.
  97. 97. Massei G. Fertility control for wildlife: a European perspective. Animals. 2023;13(3):428. https://doi.org/10.3390/ani13030428

Downloads

Download data is not yet available.