Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Spatial and temporal changes in rainfall in the southern zone of Tamil Nadu-An analysis

DOI
https://doi.org/10.14719/pst.8235
Submitted
13 March 2025
Published
10-09-2025 — Updated on 29-09-2025
Versions

Abstract

Rainfall plays a crucial role in planning and managing water resources. Climate fluctuations significantly impact water availability and rainfall patterns. This study analyses spatiotemporal changes and trends in extreme rainfall events from 1990 - 2022 in the Ramanathapuram district of Tamil Nadu. It also compares seasonal rainfall variability across four districts-Ramanathapuram, Virudhunagar, Sivaganga and Madurai-within the southern zone. The study employs Markov Chain modelling, the Mann-Kendall trend test and compound growth rate analysis, utilising secondary data from government sources. The findings indicate significant shifts in the pattern of rainfall in Ramanathapuram, exhibiting a downward trend. The transition matrix suggests a 75 % chance of heavy rain in November. The results provide significant insights into climate variability and its impacts on sustainable agriculture, suggesting that farmers plan for a better cropping system in advance to achieve a higher yield.

References

  1. 1. John A. Rainfall trend analysis by Mann Kendall test for Vamanapuram River Basin, Kerala. Int J Civil Eng Technol. 2018;9 (13):1549–56.
  2. 2. Singh P. Rainfall and financial forecasting using fuzzy time series and neural networks-based model. Int J Mach Learn Cybern. 2018;9 (3):491–506. https://doi.org/10.1007/s13042-016-0548-5
  3. 3. Talchabhadel R, Karki R. Correction to: assessing climate boundary shifting under climate change scenarios across Nepal. Environ Monit Assess. 2019;191:707. https://doi.org/10.1007/s10661-019- 7907-0
  4. 4. Lalmuanzuala B, Sathyamoorthy NK, Kokilavani S, Jagadeeswaran R, Kannan B. Drought analysis in southern region of Tamil Nadu using meteorological and remote sensing indices. Mausam. 2023;74 (4):973–88. https://doi.org/10.54302/mausam.v74i4.6040
  5. 5. Sen Roy S, Balling RC. Diurnal variations in summer season precipitation in India. Int J Climatol. 2007;27(7):969–76. https:// doi.org/10.1002/joc.1458
  6. 6. Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier P. Increasing trend of extreme rain events over India in a warming environment. Sci. 2006;314(5804):1442–5. https:// doi.org/10.1126/science.1132027
  7. 7. Islam T, Rico-Ramirez MA, Han D, Srivastava PK, Ishak AM. Performance evaluation of the TRMM precipitation estimation using ground-based radars from the GPM validation network. J Atmos Sol Terr Phys. 2012;77:194–208. https://doi.org/10.1016/ j.jastp.2012.01.001
  8. 8. Guhathakurta P, Rajeevan M. Trends in the rainfall pattern over India. Int J Climatol. 2008;28(11):1453–69. https://doi.org/10.1002/ joc.1640
  9. 9. Cengiz TM, Tabari H, Onyutha C, Kisi O. Combined use of graphical and statistical approaches for analyzing historical precipitation changes in the Black Sea region of Turkey. Water. 2020;12(3):705. https://doi.org/10.3390/w12030705
  10. 10. Ay M, Kisi O. Investigation of trend analysis of monthly total precipitation by an innovative method. Theor Appl Climatol. 2015;120(3–4):617–29. https://doi.org/10.1007/s00704-014-1198-8
  11. 11. Nathan K. Droughts in Tamil Nadu: a qualitative and quantitative appraisal. Drought Netw News. 1998;(62). Available from: https:// digitalcommons.unl.edu/droughtnetnews/62
  12. 12. Ramaraj A, Kokilavani S, Manikandan N, Arthirani B, Rajalakshmi D. Rainfall stability and drought valuation (using SPI) over southern zone of Tamil Nadu. Curr World Environ. 2015;10(3):928. https:// doi.org/10.12944/CWE.10.3.23
  13. 13. Kokilavani S, Ramanathan S, Dheebakaran G, Sathyamoorthy N, Maragatham N, Gowtham R. Drought intensity and frequency analysis using SPI for Tamil Nadu, India. Curr Sci. 2021;121(6):781– 88.
  14. 14. Paulo AA, Pereira LS. Prediction of SPI drought class transitions using Markov chains. Water Resour Manag. 2007;21(10):1813–27. https://doi.org/10.1007/s11269-006-9129-9
  15. 15. Meshach T, Oduro FT, Adedia D, Abaye DA. Markov chain analysis of the rainfall patterns of five geographical locations in the south eastern coast. Earth Perspect. 2017;6(4):2–11. https:// doi.org/10.1186/s40322-017-0042-6

Downloads

Download data is not yet available.