Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Tree fruit harvesting: Recent developments and future challenges for robotic harvesting

DOI
https://doi.org/10.14719/pst.8239
Submitted
13 March 2025
Published
21-06-2025

Abstract

Tree fruit harvesting is a vital process in agriculture, involving the collection of ripe fruits from trees. This review examines manual, mechanical and automated harvesting methods, focusing on their benefits, challenges and potential advancements. Manual methods, such as hand-picking and using ladders, are highly labour-intensive and time-consuming. To address these challenges, mechanical systems like trunk shakers, canopy shakers, limb shakers and catch-and-frame methods have been introduced. These systems use vibrations and capturing mechanisms to improve efficiency and reduce labour costs. However, mechanical methods are not commonly used for fresh fruit harvesting due to the risk of damaging soft fruits and trees. To solve this issue, precise shake-and-catch systems with controlled vibration frequency and amplitude are being developed, achieving fruit removal rates of up to 93.3 %. Harvesting speeds vary, with manual pickers managing 0.5 th-1, trunk shakers 10 th-1 and canopy shakers 25 th-1. Automated harvesting offers even greater efficiency by using robots equipped with advanced technologies, such as deep learning, image processing and specialized grippers, to detect and pick fruits. These systems can complete harvesting in just 4 seconds per fruit. This review highlights the strengths and weaknesses of current methods and explores strategies to enhance fruit harvesting technologies.

References

  1. 1. Mendelson E, Zumajo-Cardona C, Ambrose B. What is a fruit?. Frontiers for Young Minds. 2020;8:27. https://doi.org/10.3389/frym.2020.00027
  2. 2. Sah S, Johar V, Karthi JS. Status and marketing of fruits and vegetables in India: A review. Asian Journal of Agricultural Extension, Economics & Sociology. 2022;40(7):1-11. https://doi.org/10.9734/ajaees/2022/v40i730911
  3. 3. Murthy KS, Dasaraju H. Role of Agricultural & Processed Food Products Export Development Authority (APEDA) for the development of fruit processing industry: A study of fruit processing industry in Chittoor district of Andhra Pradesh. International Journal of Management Research and Reviews. 2012;2(6):926.
  4. 4. Gowri MU, Prabhu R, Anbarassan A, Govindraj M. Growth and trend analysis of major horticulture crops in Tamil Nadu. Statistical Approaches on Multidisciplinary Research. 2017;1:1-2.
  5. 5. Chaturvedi K, Singh P, Mehrotra R. Application of omics technologies in tropical and subtropical fruit crops. In:Omics in horticultural crops. Academic Press. 2022. p. 119-45. https://doi.org/10.1016/B978-0-323-89905-5.00027-6
  6. 6. Ranjan P, Brahmi P, Tyagi V, Ranjan JK, Srivastava V, Yadav SK,et al. Global interdependence for fruit genetic resources: status and challenges in India. Food Security. 2022;14(3):591-619. https://doi.org/10.1007/s12571-021-01249-6
  7. 7. Bumgarner NR, Scheerens JC, Kleinhenz MD. Nutritional yield: A proposed index for fresh food improvement illustrated with leafy vegetable data. Plant Foods for Human Nutrition. 2012;67(3):215-22. https://doi.org/10.1007/s11130-012-0306-0
  8. 8. Murphy MM, Barraj LM, Herman D, Bi X, Cheatham R, Randolph RK. Phytonutrient intake by adults in the United States in relation to fruit and vegetable consumption. Journal of the Academy of Nutrition and Dietetics. 2012;112(2):222-9. https://doi.org/10.1016/j.jada.2011.08.044
  9. 9. Dolkar D, Bakshi P, Wali VK, Sharma V, Shah RA. Fruits as nutraceuticals. Ecology, Environment and Conservation. 2017;23(2):113-8.
  10. 10. Omar S. Olive: Native of Mediterranean region and health benefits. Pharmacognosy Reviews. 2008;2(3):135.
  11. 11. International Olive Council. (2012). General description of olive growing in Greece.January 22, 2020. https://www.internationaloliveoil.org/wpcontent/uploads/2019/11/ENGLISH_POLICY_GREECE-2012_OK.pdf
  12. 12. Trivedi A, Fatima N, Husain I, Misra A. An update on the therapeutic potential of neem and its active constituents: A panacea for all diseases. Era's Journal of Medical Research. 2019;6(1):110-7. https://doi.org/10.24041/ejmr2019.116
  13. 13. Pankaj S, Lokeshwar T, Mukesh B, Vishnu B. Review on neem (Azadirachta indica): thousand problems one solution. International Research Journal of Pharmacy. 2011;2(12):97-102.
  14. 14. Alzohairy MA. Therapeutics role of Azadirachta indica (Neem) and their active constituents in diseases prevention and treatment. Evidence‐Based Complementary and Alternative Medicine. 2016;2016(1):7382506. https://doi.org/10.1155/2016/7382506
  15. 15. Aispuro JA, MORA JL, GARCÍA JA, MARTÍNEZ GD, ESQUEDA MT, VELASCO JL. Neem (Azadirachta indica A. Juss) leaves as growth promoter in lambs’ diets. Agro Productividad. 2024. https://doi.org/10.32854/agrop.v17i2.2563
  16. 16. Tripathi AV, Suthakar B, Surendrakumar A, Kavitha R, Raja K. Design and development of ground collection system for neem fruit. International Journal of Environment and Climate Change. 2022;12(11):2095-104. https://doi.org/10.9734/ijecc/2022/v12i1131199
  17. 17. National Horticultural Board (NHB). Indian Horticulture Database. Ministry of Agriculture, Government of India. 2020.
  18. 18. Ahmed WA, Azmat R, Qayyum A, Mehhmood A, Masaud K, Liaquat M,et al. The role of chitosan to prolonged the fresh fruit quality during storage of grapefruit cv. ray ruby. Pakistan Journal of Botany. 2018;50(1):151-9.
  19. 19. Makarabbi G. An analysis on performance of mango production in India. Asian Journal of Agricultural Extension, Economics & Sociology. 2023;41(10):968-76. https://doi.org/10.9734/ajaees/2023/v41i102250
  20. 20. Owen RW, Haubner R, Würtele G, Hull WE, Spiegelhalder B, Bartsch H. Olives and olive oil in cancer prevention. European Journal of Cancer Prevention. 2004;13(4):319-26. https://doi.org/10.1097/01.cej.0000130221.19480.7e
  21. 21. Somova LI, Shode FO, Ramnanan P, Nadar A. Antihypertensive, antiatherosclerotic and antioxidant activity of triterpenoids isolated from Olea europaea, subspecies africana leaves. Journal of Ethnopharmacology. 2003;84(2-3):299-305. https://doi.org/10.1016/S0378-8741(02)00332-X
  22. 22. Al-Hashemi ZS, Hossain MA. Biological activities of different neem leaf crude extracts used locally in Ayurvedic medicine. Pacific Science Review A: Natural Science and Engineering. 2016;18(2):128-31. https://doi.org/10.1016/j.psra.2016.09.013
  23. 23. Shah KA, Patel MB, Patel RJ, Parmar PK. Mangifera indica (mango). Pharmacognosy Reviews. 2010;4(7):42.
  24. https://doi.org/10.4103/0973-7847.65325
  25. 24. Boyer J, Liu RH. Apple phytochemicals and their health benefits. Nutrition Journal. 2004;3:1-5. https://doi.org/10.1186/1475-2891-3-5
  26. 25. Chen Y, Xu SS, Chen JW, Wang Y, Xu HQ, Fan NB, et al. Anti-tumor activity of Annona squamosa seeds extract containing annonaceous acetogenin compounds. Journal of Ethnopharmacology. 2012;142(2):462-6.
  27. https://doi.org/10.1016/j.jep.2012.05.019
  28. 26. Pandey N, Barve D. Phytochemical and pharmacological review on Annona squamosa Linn. International Journal of Research in Pharmaceutical and Biomedical Sciences. 2011;2(4):1404-12.
  29. 27. Peixoto JS, Comar JF, Moreira CT, Soares AA, De Oliveira AL, Bracht A, et al. Effects of Citrus aurantium (bitter orange) fruit extracts and p-synephrine on metabolic fluxes in the rat liver. Molecules. 2012;17(5):5854-69. https://doi.org/10.3390/molecules17055854
  30. 28. SirajuddinKhan M, Vejendla Ravikumar VR, Neelima K. Pharmacological intervention of the fruit of plant Ananas comosus acting as wound healing agent in various animal models. International Journal of Pharmacy and Technology. 2011;3(1):1807-24
  31. 29. Grover JK, Vats V, Rathi SS. Anti-hyperglycemic effect of Eugenia jambolana and Tinospora cordifolia in experimental diabetes and their effects on key metabolic enzymes involved in carbohydrate metabolism. Journal of Ethnopharmacology. 2000;73(3):461-70. https://doi.org/10.1016/S0378-8741(00)00319-6
  32. 30. Singh O, Ali M. Phytochemical and antifungal profiles of the seeds of Carica papaya L. Indian Journal of Pharmaceutical Sciences. 2011;73(4):447-51. doi: 10.4103/0250-474X.95648
  33. 31. Mishra DS, Singh S, Singh AK, Rao VA, Sarolia DK. Techniques of orchard establishment in arid and semi-arid regions. Journal of Agriculture and Ecology. 2020;10:22-35. http://doi.org/10.53911/JAE
  34. 32. Di Vaio C, Marallo N, Nocerino S, Famiani F. Mechanical harvesting of oil olives by trunk shaker with a reversed umbrella interceptor. Advances in Horticultural Science[rivista dell'ortoflorofrutticoltura italiana]. 2012;26(3/4):176-9.
  35. 33. Pu Y, Wang S, Yang F, Ehsani R, Zhao L, Li C,et al. Recent progress and future prospects for mechanized harvesting of fruit crops with shaking systems. International Journal of Agricultural and Biological Engineering. 2023;16(1):1-3.
  36. https://doi.org/10.25165/j.ijabe.20231601.7954
  37. 34. Bac CW, Hemming J, Van Tuijl BA, Barth R, Wais E, van Henten EJ. Performance evaluation of a harvesting robot for sweet pepper. Journal of Field Robotics. 2017;34(6):1123-39. https://doi.org/10.1002/rob.21709
  38. 35. Hayashi S. Robotic harvesting technology for fruit vegetables in protected horticultural production. In:Meeting of the 7th Fruit, Nut and Vegetable Production Engineering Symposium 2005.https://doi.org/10.11357/jsam.72.80
  39. 36. Hayashi S, Ganno K, Ishii Y, Tanaka I. Robotic harvesting system for eggplants. Japan Agricultural Research Quarterly: JARQ. 2002;36(3):163-8. https://doi.org/10.6090/jarq.36.163
  40. 37. Mehta SS. Vision-based control for autonomous robotic citrus harvesting (Doctoral dissertation, University of Florida).2007.
  41. 38. Khatri S, Shrestha S, Pokharel KP. Investigation of different manual harvesting tools performance for harvesting output, mechanical injuries, storability and post-harvest physio-chemical attributes of mandarin fruit in Nepal. Journal of Horticulture and Postharvest Research. 2022;5(1):35-52. https://doi.org/10.22077/jhpr.2021.4426.1220
  42. 39. Ibrahim MM. Development of an electrical hand-held olive harvester. Misr Journal of Agricultural Engineering. 2018;35(3):827-46. DOI: 10.21608/mjae.2018.95541
  43. 40. Benkeblia N, Tennant DP, Jawandha SK, Gill PS. Preharvest and harvest factors influencing the postharvest quality of tropical and subtropical fruits. In: Yahia EM, editor. Postharvest biology and Technology of Tropical and Subtropical Fruits. Woodhead Publishing; 2011. p. 112-41. https://doi.org/10.1533/9780857093622.112
  44. 41. Plasquy E, Florido MC, Sola-Guirado RR, García JM. Effects of a harvesting and conservation method for small producers on the quality of the produced olive oil. Agriculture. 2021;11(5):417. https://doi.org/10.3390/agriculture11050417
  45. 42. Sperandio G, Biocca M, Fedrizzi M, Toscano P. Economic and technical features of different levels of mechanization in olive harvesting. Chemical Engineering Transactions. 2017;58:853-8. DOI: 10.3303/CET1758143
  46. 43. Deboli R, Calvo A, Gambella F, Preti C, Dau R, Casu EC. Hand arm vibration generated by a rotary pick-up for table olives harvesting. Agricultural Engineering International: CIGR Journal. 2014;16(1):228-35.
  47. 44. Uchegbu M, Okoli I, Esonu B, Iloeje M. The grovving importance of neem (Azadirachta indica A. Juss) in agriculture, industry, medicine and Eenvironment: A review. Research Journal of Medicinal Plant. 2011;5(3):230-45. https://doi.org/10.3923/rjmp.2011.230.245
  48. 45. Solanki RC, Naik SN, Santosh S, Srivastava AP, Singh SP. Design, development and evaluation of neem depulper. Agricultural Mechanization in Asia Africa and Latin America. 2017;48(4):46.
  49. 46. Nahate HD, Kothalkar VG, Patil ND. Development of Manually Operated Citrus Fruit Harvester. International Journal of Current Microbiology and Applied Sciences. 2021;10(01):3320-26. https://doi.org/10.20546/ijcmas.2021.1001.389
  50. 47. Roy T, Amin MR, Sarker MK, Tapu FA, Huda MN. Design, fabrication and performance evaluation of a simple mango harvester. International Journal of Natural and Social Sciences. 2021;8(2):37-43. https://doi.org/10.5281/ZENODO.4944393
  51. 48. Sharma MK, Kumar S, Kumar A, Kumar S. Assessment of mango harvester for drudgery reduction over conventional methods. Assessment. International Journal of Chemical Studies 2019;SP6:801-4
  52. 49. Nasini L, Proietti P. Olive harvesting. In: Peri C, editor. The Extra‐Virgin Olive Oil Handbook. 2014:87-105. https://doi.org/10.1002/9781118460412.ch8
  53. 50. Kaur B, Dimri S, Singh J, Mishra S, Chauhan N, Kukreti T, et al. Insights into the harvesting tools and equipment's for horticultural crops: From then to now. Journal of Agriculture and Food Research. 2023;14:100814. https://doi.org/10.1016/j.jafr.2023.100814
  54. 51. Torregrosa A, Molina JM, Pérez M, Ortí E, Xamani P, Ortiz C. Mechanical harvesting of ornamental citrus trees in Valencia, Spain. Agronomy. 2019;9(12):827. https://doi.org/10.3390/agronomy9120827
  55. 52. Ibrahim AA, Majeed WA. The Design of Bunch Shaker and the Date Fruit Detachment Force. Engineering Journal. 2021;25(8):127-36. https://doi.org/10.4186/ej.2021.25.8.127
  56. 53. Erkan M, Dogan A. Harvesting of horticultural commodities. In:Postharvest technology of perishable horticultural commodities. Woodhead Publishing; 2019.p. 129-59. https://doi.org/10.1016/B978-0-12-813276-0.00005-5
  57. 54. Roka FM, Ehsani RJ, Futch SH, Hyman BR. Citrus Mechanical Harvesting Systems--Continuous Canopy Shakers: FE951/FE951, 8/2014. EDIS. 2014;2014(7). DOI:10.32473/edis-fe951-2014
  58. 55. Brown GK. New mechanical harvesters for the Florida citrus juice industry. HortTechnology. 2005;15(1):69-72.
  59. https://doi.org/10.21273/HORTTECH.15.1.0069
  60. 56. Testa R, Di Trapani AM, Sgroi F, Tudisca S. Economic analysis of process innovations in the management of olive farms. American Journal of Applied Sciences. 2014;11(9):1486. doi:10.3844/ajassp.2014.1486.1491
  61. 57. Ghonimy MI, Ibrahim MM, Abd El Rahman EN, Hassan AM. Development of olive harvesting machine for smallholdings. Plant Archives. 2020;20(2):3576-83.
  62. 58. Ghonimy M, Ibrahim M, Drees A, Marey S. Development of a pneumatic olive harvester. Engenharia Agrícola. 2021;41(3):347-58. https://doi.org/10.1590/1809-4430-eng.agric.v41n3p347-358/2021
  63. 59. Klonsky KM, Vossen PM, Connell JH, Livingston P. Sample costs to establish high density olive orchards and produce oil [Internet]. 2004.
  64. 60. Ferguson L, Rosa UA, Castro-Garcia S, Lee SM, Guinard JX, Burns J, et al. Mechanical harvesting of California table and oil olives. Advances in Horticultural Science. 2010;24(1):53-63.
  65. 61. Balakrishnan S, Tripathi AV, Allimuthu S, Ramasamy K, Sivasubramaniam R. Effect of machine and operational parameters on picking and conveying efficiency in an experimental test rig for the development of a pneumatic suction-type ground collection system for neem (Azadirachta indica) fruit. Environmental Engineering & Management Journal. 2024;23(12). http://doi.org/10.30638/eemj.2024.199
  66. 62. Gowtham M, Suthakar B, Surendrakumar A, Kavitha R, Masilamani P. Design, development and evaluation of Neem (Azadirachta indica) fruit picker cum collector. Journal of Experimental Agriculture International. 2024;46(2):35-45. https://doi.org/10.9734/jeai/2024/v46i22307
  67. 63. Sola-Guirado RR, Castro-Garcia S, Blanco-Roldán GL, Gil-Ribes JA, González-Sánchez EJ. Performance evaluation of lateral canopy shakers with catch frame for continuous harvesting of oranges for juice industry. International Journal of Agricultural and Biological Engineering. 2020;13(3):88-93. https://doi.org/10.25165/j.ijabe.20201303.4998
  68. 64. Savary SK, Ehsani R, Schueller JK, Rajaraman BP. Simulation study of citrus tree canopy motion during harvesting using a canopy shaker. Transactions of the ASABE. 2010;53(5):1373-81. https://doi.org/10.13031/2013.34892
  69. 65. Safdari A, Ghassemzadeh HR, Abdollahpour SH, Ghafari H. Design, construction and evaluation of a portable limb shaker for almond tree. Australian Journal of Agricultural Engineering. 2010;1(5):179-83.
  70. 66. Castro-Garcia S, Aragon-Rodriguez F, Arias-Calderón R, Sola-Guirado RR, Gil-Ribes JA. The contribution of fruit and leaves to the dynamic response of secondary branches of orange trees. Biosystems Engineering. 2020;193:149-56. https://doi.org/10.1016/j.biosystemseng.2020.02.019
  71. 67. Gupta SK, Ehsani R, Kim NH. Optimization of a citrus canopy shaker harvesting system: Mechanistic tree damage and fruit detachment models. Transactions of the ASABE. 2016;59(4):761-76. https://doi.org/10.13031/trans.59.10819
  72. 68. Kumar ND, Yadav NN, Vaghela DR, Aratiben K, Aruna TN, Yadav D. Mango harvester with a battery: a solution for the farmer. The Pharma Innovation Journal 2022;11(3):569-73.
  73. 69. Masum H, Pati M, Mahato S. Development of an advanced mango picker with automatic sorting facility. Journal of Postharvest Technology. 2023;11(2):9-19.
  74. 70. Prakash A, Dixit AK, Khurana R, Singh M, Mahal AK, Manes GS. Tractor-operated hydraulically controlled tree shaker for harvesting fruits. Indian Journal of Horticulture. 2023;80(03):291-6. https://doi.org/10.58993/ijh/2023.80.3.10
  75. 71. Kootstra G, Wang X, Blok PM, Hemming J, Van Henten E. Selective harvesting robotics: current research, trends, and future directions. Current Robotics Reports. 2021;2:95-104. https://doi.org/10.1007/s43154-020-00034-1
  76. 72. Zhou H, Wang X, Au W, Kang H, Chen C. Intelligent robots for fruit harvesting: Recent developments and future challenges. Precision Agriculture. 2022;23(5):1856-907. https://doi.org/10.1007/s11119-022-09913-3
  77. 73. Tang Y, Chen M, Wang C, Luo L, Li J, Lian G,et al. Recognition and localization methods for vision-based fruit picking robots: A review. Frontiers in Plant Science. 2020 ;11:510. https://doi.org/10.3389/fpls.2020.00510
  78. 74. Zhang B, Xie Y, Zhou J, Wang K, Zhang Z. State-of-the-art robotic grippers, grasping and control strategies, as well as their applications in agricultural robots: A review. Computers and Electronics in Agriculture. 2020;177:105694. https://doi.org/10.1016/j.compag.2020.105694
  79. 75. Bac CW, Van Henten EJ, Hemming J, Edan Y. Harvesting robots for high‐value crops: State‐of‐the‐art review and challenges ahead. Journal of Field Robotics. 2014;31(6):888-911. https://doi.org/10.1002/rob.21525
  80. 76. Mehta SS, MacKunis W, Burks TF. Robust visual servo control in the presence of fruit motion for robotic citrus harvesting. Computers and Electronics in Agriculture. 2016;123:362-75. https://doi.org/10.1016/j.compag.2016.03.007
  81. 77. Bargoti S, Underwood J. Deep fruit detection in orchards. In: IEEE international conference on robotics and automation (ICRA); 2017; May 29; Singapore. 2017 p. 3626-33. https://doi.org/10.1109/ICRA.2017.7989417
  82. 78. Kurhade AJ, Deshpande AM, Dongare RD. Review on “Automation in Fruit Harvesting. International Journal of Latest Trends in Engineering and Technology. 2015;6(2):1-5.
  83. 79. Chen Y, An X, Gao S, Li S, Kang H. A deep learning-based vision system combining detection and tracking for fast on-line citrus sorting. Frontiers in Plant Science. 2021;12:622062. https://doi.org/10.3389/fpls.2021.622062
  84. 80. Jayakumari R, Nidamanuri RR, Ramiya AM. Object-level classification of vegetable crops in 3D LiDAR point cloud using deep learning convolutional neural networks. Precision Agriculture. 2021;22(5):1617-33. https://doi.org/10.1007/s11119-021-09803-0
  85. 81. Aljaafreh A, Elzagzoug EY, Abukhait J, Soliman AH, Alja’Afreh SS, Sivanathan A,et al. A Real-Time Olive Fruit Detection for Harvesting Robot Based on YOLO Algorithms. Acta Technologica Agriculturae. 2023;26(3):121-32. https://doi.org/10.2478/ata-2023-0017
  86. 82. Al-Habahbeh OM, Ayoub S, Al Yaman M, Matahen M, Sarayra M. A Smart robotic arm for harvesting olive fruits. In:MATEC web of conferences 2022. https://doi.org/10.1051/matecconf/202237005004
  87. 83. Yoshida T, Onishi Y, Kawahara T, Fukao T. Automated harvesting by a dual-arm fruit harvesting robot. ROBOMECH Journal. 2022;9(1):19. https://doi.org/10.1186/s40648-022-00233-9
  88. 84. Rajendran V, Debnath B, Mghames S, Mandil W, Parsa S, Parsons S, et al. Towards autonomous selective harvesting: A review of robot perception, robot design, motion planning and control. Journal of Field Robotics. 2024;41(7):2247-79. https://doi.org/10.1002/rob.22230
  89. 85. Han C, Lv J, Dong C, Li J, Luo Y, Wu W, et al. Classification, advanced technologies, and typical applications of end-effector for fruit and vegetable picking robots. Agriculture. 2024;14(8):1310. https://doi.org/10.3390/agriculture14081310
  90. 86. Wang Yi WY, Zhang Mao ZM, Liu Bo LB, Liu Sa LS, He Yu HY, Xu HongBin XH. Design and experiment of clamping mechanism about end-effector for citrus harvesting robot. Journal of Agricultural Science & Technology. 2019;29(4):61-9. https://doi.org/10.13304/j.nykjdb.2018.0266
  91. 87. Chiu YC, Yang PY, Chen S. Development of the end-effector of a picking robot for greenhouse-grown tomatoes. Applied Engineering in Agriculture. 2013;29(6):1001-9. https://doi.org/ 10.13031/aea.29.9913
  92. 88. Almendral KA, Babaran RM, Carzon BJ, Cu KP, Lalanto JM, Abad AC. Autonomous fruit harvester with machine vision. Journal of Telecommunication, Electronic and Computer Engineering. 2018;10(1-6):79-86.
  93. 89. Xiao F, Wang H, Xu Y, Zhang R. Fruit detection and recognition based on deep learning for automatic harvesting: An overview and review. Agronomy. 2023;13(6):1625. https://doi.org/10.3390/agronomy13061625
  94. 90. Zhang K, Lammers K, Chu P, Li Z, Lu R. System design and control of an apple harvesting robot. Mechatronics. 2021;79:102644. https://doi.org/10.1016/j.mechatronics.2021.102644
  95. 91. Zeeshan S, Aized T, Riaz F. In-Depth Evaluation of Automated Fruit Harvesting in Unstructured Environment for Improved Robot Design. Machines. 2024;12(3):151. https://doi.org/10.3390/machines12030151
  96. 92. De-An Z, Jidong L, Wei J, Ying Z, Yu C. Design and control of an apple harvesting robot. Biosystems engineering. 2011;110(2):112-22. https://doi.org/10.1016/j.biosystemseng.2011.07.005
  97. 93. Goulart R, Jarvis D, Walsh KB. Evaluation of end effectors for robotic harvesting of mango fruit. Sustainability. 2023;15(8):6769. https://doi.org/10.3390/su15086769

Downloads

Download data is not yet available.