Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Comparative study of varietal performance and spacing on the physico-chemical attributes of cashew (Anacardium occidentale L.) under various planting densities

DOI
https://doi.org/10.14719/pst.8293
Submitted
15 March 2025
Published
04-10-2025

Abstract

A field trial was carried out at the AICRP on Cashew, Bhubaneswar, Odisha, India, during the 2022-23 and 2023-24 cropping seasons to evaluate the effect of cashew varieties and planting densities on the physio-chemical attributes of cashew. Three cashew varieties viz., VRI-3, NRCC Selection-2 and Balabhadra were evaluated under three different planting densities (2.5 m × 2.5 m, 3.0 m × 3.0 m and 7.5 m × 7.5 m). The results revealed non-significant variations of physio-chemical attributes within the planting densities. The highest physio-chemical attributes of both cashew apple and kernel viz., Total Soluble Solids (TSS) (12.47 °Brix), TSS: acid (32.04), ascorbic acid (192.35 mg/100 g), total sugar (11.20 %), reducing sugar (9.30 %), non-reducing sugars (1.77 %), protein (20.74 %), carbohydrates (21.29 %), fat (43.89 %) and calcium (0.039 %) were observed in the normal densities (7.5 m × 7.5 m), while the highest titratable acidity (0.42 %) was recorded at the closer spacing (2.5 m × 2.5 m). Genetic factors were found to be the primary drivers of variation in the quality of cashew apples and kernels. Among the tested varieties, VRI-3 variety exhibited highest TSS (12.58 °Brix), total sugar (11.18 %), reducing sugar (9.25 %) and non-reducing sugars (1.78 %), but highest ascorbic acid (199.15 mg/100 g) and calcium (0.39 %) was noted in Balabhadra variety. NRCC Selection-2 demonstrated highest protein (21.25 %), carbohydrates (21.62 %) and fat (44.40 %). These findings highlight the importance of variety selection in enhancing the quality of cashew production under ultra-high-density planting systems.

References

  1. 1. Directorate of Cashewnut and Cocoa Development (DCCD). Area and production of cashew-2022-23. Kochi (IN): Government of India, Ministry of Agriculture and Farmers Welfare; 2024.
  2. 2. Kannan V, Rangarajan V, Manjare SD, Pathak PV. Microbial production of value-added products from cashew apples-an economical boost to cashew farmers. J Pure Appl Microbiol. 2021;15(4):1816-32. https://doi.org/10.22207/JPAM.15.4.71
  3. 3. Adou M, Tetchi FA, Gbane M, Niaba PVK, Amani NG. Mineral composition of the cashew apple juice (Anacardium occidentale L.) of Yamoussoukro, Côte d’Ivoire. Pak J Nutr. 2011;10(12):1109-14. https://doi.org/10.3923/pjn.2011.1109.1114
  4. 4. Saroj PL, Krishna Kumar NK, Janakiraman T. Converting wastelands into goldmine by cashew cultivation. Indian Hortic J. 2014;3:49-56.
  5. 5. Suganya P, Dharshini R. Value-added products from cashew apple-an alternate nutritional source. Int J Curr Res. 2011;3(7):177-80.
  6. 6. Vijayakumar P. Cashew apple utilization: a novel method to enhance the profit. The Cashew. 1991;5:17-21.
  7. 7. Rao EVVB, Nagaraja KV. Studies report on cashew. In: Souvenir, International Conference on Plantation Crops; 2000. p. 12–5.
  8. 8. Anand A, Sahu GS, Mishra N. Physico-chemical characteristics of cashew. Res J Agric Sci. 2015;6(3):656-8.
  9. 9. Ogunwolu SO, Henshaw FO, Oguntona BE, Afolabi OO. Nutritional evaluation of cashew (Anacardium occidentale L.) nut protein concentrate and isolate. Afr J Food Sci. 2015;9(1):23-30. https://doi.org/10.5897/AJFS2014.1198
  10. 10. Kader AA. Flavor quality of fruits and vegetables. J Sci Food Agric. 2008;88(11):1863-8. https://doi.org/10.1002/jsfa.3293
  11. 11. Toivonen PMA, Brummell DA. Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biol Technol. 2008;48(1):1-14. https://doi.org/10.1016/j.postharvbio.2007.09.004
  12. 12. Uselis N. Growth and productivity of dwarf apple trees in bearing orchards of various constructions. Sodin Daržininkystė. 2003;22(1):3-13.
  13. 13. Shi DY, Li YH, Zhang JW, Liu P, Zhao B, Dong ST. Increased plant density and reduced N rate lead to more grain yield and higher resource utilization in summer maize. J Integr Agric. 2016;15:2515-28. https://doi.org/10.1016/S2095-3119(16)61355-2
  14. 14. Qiu R, Song J, Du T, Kang S, Tong L, Chen R, et al. Response of evapotranspiration and yield to planting density of solar greenhouse-grown tomato in northwest China. Agric Water Manag. 2013;130:44-51. https://doi.org/10.1016/j.agwat.2013.08.013
  15. 15. Choi DG, Song J, Kang I. Effect of tree height on light transmission, spray penetration, tree growth and fruit quality in the slender-spindle system of ‘Hongro’/M9 apple trees. Korean J Hortic Sci Technol. 2014;32(4):454-62. https://doi.org/10.7235/hort.2014.13157
  16. 16. Asrey R, Patel VB, Barman K, Pal RK. Pruning affects fruit yield and postharvest quality in mango (Mangifera indica L.) cv. Amrapali. Fruits. 2013;68:367-80. https://doi.org/10.1051/fruits/2013082
  17. 17. Pathak SK. Effect of high density planting systems on physiological and biochemical status of rejuvenated mango plants of cv. Amrapali. Indian J Hortic. 2017;74(3):351-6. https://doi.org/10.5958/0974-0112.2017.00070.6
  18. 18. AOAC. Official methods of analysis. 2nd ed. Washington (DC): Association of Official Agricultural Chemists; 1975.
  19. 19. Ranganna S. Manual of analysis of fruit and vegetable products. New Delhi: Tata McGraw-Hill Publishing Co Ltd; 1977. p. 9-82.
  20. 20. Ranganna S. Handbook of analysis and quality control for fruit and vegetable products. 2nd ed. New Delhi: Tata McGraw-Hill Publishing Co Ltd; 2004.
  21. 21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-75. https://doi.org/10.1016/S0021-9258(19)52451-6
  22. 22. Hodge JE, Hofreiter BT. Determination of reducing sugars and carbohydrates. In: Whistler RL, Wolfrom ML, editors. Methods in carbohydrate chemistry. New York: Academic Press; 1962. p. 380-94.
  23. 23. Jackson ML. Soil chemical analysis. New Delhi: Prentice Hall of India Pvt. Ltd.; 1973. p. 498.
  24. 24. Sadasivam S, Manickam A. Biochemical methods for agricultural sciences. New Delhi: New Age International (P) Ltd.; 1996.
  25. 25. Panse V, Sukhatme PV. Statistical methods for agricultural workers. New Delhi: ICAR; 1985.
  26. 26. Gopinath PP, Parsad R, Joseph B, Adarsh VS. GRAPES (General R-shiny based Analysis Platform Empowered by Statistics)-Web application for data analysis in agriculture. J Indian Soc Agric Stat. 2020;74(2):149-58.
  27. 27. Tripathy P, Sethi K, Patnaik AK, Mukherjee SK. Nutrient management in high-density cashew plantation under coastal zones of Odisha. Int J Bio-Resour Stress Manag. 2015;6(1):93-7. https://doi.org/10.5958/0976-4038.2015.00025.1
  28. 28. Nayak MG, Muralidhara BM, Janani P, Savadi S. Performance of cashew (Anacardium occidentale) varieties under different planting density for growth and yield traits. Indian J Agric Sci. 2020;90:1453-9. https://doi.org/10.56093/ijas.v90i8.105942
  29. 29. Srivastava KK, Singh DB, Kumar D, Singh SR, Sharma OC, Lal S. Effect of planting densities and varieties on yield and yield-associated characters of apple (Malus × domestica) on semi-dwarfing rootstock. Indian J Agric Sci. 2017;87(5):593-6. https://doi.org/10.56093/ijas.v87i5.70107
  30. 30. Narendra R, Bharad SG, Nagre PK, Patil SR, Raut UA, Karan J. Effect of planting density and fruit load on fruit yield and quality of custard apple. Pharma Innov J. 2022;11(9):381-90.
  31. 31. Mahesh P, Shant L, Pankaj N, Prabhakar J. Response of high-density spacing on physico-chemical quality and yield of guava (Psidium guajava L.) cv. Pant Prabhat. Int J Agric Sci. 2017;9:3962-5.
  32. 32. Raj A, Patel VB, Kumar R, Verma RB, Kumar A, Mahesh SS. Effect of high-density planting systems on growth, yield and quality of mango (Mangifera indica L.) cv. Amrapali after rejuvenation. J Pharmacogn Phytochem. 2020;9(1):229-34.
  33. 33. Dhiman N, Chandel JS, Verma P. Effect of planting density on growth, yield and fruit quality of apple cv. Jeromine. J Hill Agric. 2018;9(3):283-7. http://doi.org/10.5958/2230-7338.2019.00020.X
  34. 34. Policarpo M, Talluto G, Bianco RL. Vegetative and productive response of ‘Conference’ and ‘Williams’ pear trees planted at different in-row spacing. Sci Hortic. 2006;109:322-31. https://doi.org/10.1016/j.scienta.2006.06.009
  35. 35. Srivastava KK, Singh DB, Kumar D, Singh SR, Sharma OC, Lal S. Effect of planting densities and varieties on yield and yield-associated characters of apple (Malus × domestica Borkh.) on semi-dwarfing rootstock. Indian J Agric Sci. 2017;87:593-6. https://doi.org/10.56093/ijas.v87i5.70107
  36. 36. Mallikarjuna K. Studies on the effect of training systems and planting densities on growth, yield and fruit quality of apple (Malus × domestica Borkh.). PhD Thesis. Nauni, Solan: Dr. YS Parmar Univ Hortic For.; 2020.
  37. 37. Robinson TL, Lakso AN, Ren Z. Modifying apple tree canopies for improved production efficiency. HortScience. 1991;26:1005-12. https://doi.org/10.21273/HORTSCI.26.8.1005
  38. 38. Ladon T, Chandel JS, Sharma NC, Verma P, Singh G, Bhickta G. Influence of planting density, canopy architecture and drip fertigation on plant growth and productivity of apple (Malus × domestica Borkh.). Indian J Ecol. 2022;49(4):1292-8. http://doi.org/10.55362/IJE/2022/3660
  39. 39. Reig G, Lordan J, Sazo MM, Hoying S, Fargione M, Reginato G, et al. Long-term performance of ‘Gala’, ‘Fuji’ and ‘Honeycrisp’ apple trees grafted on Geneva® rootstocks and trained to four production systems under New York State climatic conditions. Sci Hortic. 2019;244:277-93. https://doi.org/10.1016/j.scienta.2018.09.025
  40. 40. Mirdha MILI, Sethi K, Panda PK, Mukherjee SK, Tripathy P, Dash DK. Studies on physico-chemical parameters of cashew (Anacardium occidentale L.) apple for value addition. Agric Sci Dig Res J. 2019;39(1):15-20. https://doi.org/10.18805/ag.%20D-4816
  41. 41. Ramteke V. Evaluation of cashew (Anacardium occidentale L.) genotypes for nut yield traits in South Chhattisgarh, India. Bangladesh J Bot. 2022;51(1):179-84. https://doi.org/10.3329/bjb.v51i1.58835
  42. 42. Saroj N, Prasad K, Singh SK, Kumar V, Maurya S, Maurya P, et al. Characterization of bioactive and fruit quality compounds of promising mango genotypes grown in Himalayan plain region. PeerJ. 2023;11:e15867. http://doi.org/10.7717/peerj.15867
  43. 43. Nilsson T, Gustavsson KE. Postharvest physiology of ‘Aroma’ apples in relation to position on the tree. Postharvest Biol Technol. 2007;43(1):36-46. https://doi.org/10.1016/j.postharvbio.2006.07.011
  44. 44. Feng F, Li M, Ma F, Cheng L. Effects of location within the tree canopy on carbohydrates, organic acids, amino acids and phenolic compounds in the fruit peel and flesh from three apple (Malus × domestica) cultivars. Hortic Res. 2014;1:14019. https://doi.org/10.1038/hortres.2014.19
  45. 45. Lima JR, de Oliveira Nobre AC, Magalhães HCR, de Souza RNM. Chemical composition and fatty acid profile of kernels from different Brazilian cashew tree genotypes. Afr J Food Sci. 2015;9(7):390-4. https://doi.org/10.5897/AJFS2015.1316
  46. 46. Čolić S, Rahović D, Bakić I, Zec G, Janković Z. Kernel characteristics of the almond genotypes selected in Northern Serbia. In: II Balkan Symp Fruit Growing. 2011;981:123-6. https://doi.org/10.17660/ActaHortic.2013.981.14
  47. 47. Ulemale PH, Tambe TB, Satpute SB, Dhule DT. Evaluation of guava genotypes for biochemical and yield parameters. Int J Curr Microbiol Appl Sci. 2018;6:2021-6.
  48. 48. Chandel DK, Chandel Y, Chandrakar Y, Sharma GL, Panigrahi HK. Genetic variability studies of guava (Psidium guajava L.) in Balod District of Chhattisgarh. J Pharm Innov. 2022;11(9):1324-7.
  49. 49. Polat AA, Caliskan O. Effects of planting densities on fruit quality and productivity of loquat. In: III International Symposium on Loquat ISHS. Acta Horticulturae 887; 2011. p. 133-8. https://doi.org/10.17660/ActaHortic.2011.887.21
  50. 50. Ahmad MF. Effect of planting density on growth and yield of strawberry. Indian J Hortic. 2009;66(1):132-4.
  51. 51. Hada TS, Singh AK. Evaluation of mango (Mangifera indica L.) cultivars for flowering, fruiting and yield attributes. Int J Bio-resource Stress Manag. 2017;8(4):505-9. https://doi.org/10.23910/IJBSM/2017.8.4.1811a
  52. 52. Gaikwad SP, Chalak SU, Kamble AB. Effect of spacing on growth, yield and quality of mango. J Krishi Vigyan. 2017;5(2):50-3. https://doi.org/10.5958/2349-4433.2017.00011.3

Downloads

Download data is not yet available.