Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Roles of artificial intelligence (AI) in the innovation of agriculture sector: A systematic review

DOI
https://doi.org/10.14719/pst.8297
Submitted
16 March 2025
Published
27-08-2025
Versions

Abstract

This systematic literature review investigates the role of artificial intelligence (AI) in agriculture within emerging economies, with a focus on India. By analysing 211 scopus articles through the PRISMA protocol, the study explores how AI integrates with technologies like sensors, the internet of things (IoT) and big data analytics to drive sustainable agricultural development. Key themes identified include climate change resilience, precision farming, crop and yield management, natural resource conservation and digital agriculture. The study highlights four priority areas essential for adaptive agricultural strategies: climate-resilient crops, precision farming, sustainable practices (such as AI-driven irrigation and reduced agrochemical usage) and agricultural policy improvements. This review provides valuable insights for policymakers, researchers and practitioners, emphasizing AI’s potential to transform Indian agriculture into a more efficient and sustainable system.

References

  1. 1. Birthal PS, Joshi PK, Roy D, Pandey G. Transformation and sources of growth in Southeast Asian agriculture. J Southeast Asian Econ. 2022;39(2):171-97.
  2. 2. Muhie SH. Novel approaches and practices to sustainable agriculture. J Agr Food Res. 2022;10:100446. https://doi.org/10.1016/j.jafr.2022.100446
  3. 3. Zhang P, Guo Z, Ullah S, Melagraki G, Afantitis A, Lynch I. Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. Nat Plants. 2021;7(7):864-76. https://doi.org/10.1038/s41477-021-00946-6
  4. 4. WEF. Artificial Intelligence for Agriculture Innovation; 2021. https://www3.weforum.org/docs/WEF_Artificial_Intelligence_for_Agriculture_Innovation_2021.pdf
  5. 5. Sood A, Sharma RK, Bhardwaj AK. Artificial intelligence research in agriculture: A review. Online Inf Rev. 2022;46(6):1054-75. https://doi.org/10.1108/OIR
  6. 6. Trabelsi M, Casprini E, Fiorini N, Zanni L. Unleashing the value of artificial intelligence in the agri-food sector: where are we? Brit Food J. 2023;125(13):482-515. https://doi.org/10.1108/BFJ-11-2022-1014
  7. 7. Van Klompenburg T, Kassahun A, Catal C. Crop yield prediction using machine learning: A systematic literature review. Comput Electron Agric. 2020;177:105709. https://doi.org/10.1016/j.compag.2020.105709
  8. 8. Javaid M, Haleem A, Khan IH, Suman R. Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Adv Agrochem. 2023;2(1):15-30. https://doi.org/10.1016/j.aac.2022.10.001
  9. 9. Smith MJ. Getting value from artificial intelligence in agriculture. Anim Prod Sci. 2018;60(1):46-54. https://doi.org/10.1071/AN18522
  10. 10. Cavazza A, Dal Mas F, Paoloni P, Manzo M. Artificial intelligence and new business models in agriculture: a structured literature review and future research agenda. Brit Food J. 2023;125(13):436-61. https://doi.org/10.1108/BFJ-02-2023-0132
  11. 11. Oliveira RC, Silva RD. Artificial intelligence in agriculture: benefits, challenges, and trends. Appl Sci. 2023;13(13):7405. https://doi.org/10.3390/app13137405
  12. 12. Ganeshkumar C, Jena SK, Sivakumar A, Nambirajan T. Artificial intelligence in agricultural value chain: review and future directions. J Agribus Dev Emerg. 2023;13(3):379-98. https://doi.org/10.1108/JADEE-07-2020-0140
  13. 13. Saxena R, Pant DK, Pant SC, Joshi L, Paul RK, Singh R. Artificial intelligence-led innovations for agricultural transformation: A scoping study. Agric Econ Res Rev. 2023;36:1-8. https://doi.org/10.5958/0974-0279.2023.00011.3
  14. 14. Saxena R, Pant DK, Pant SC, Singh R. Mapping the global research landscape: bibliometric analysis of agri-food systems and nutritional security. Indian J Agric Econ. 2023;78(3):328-42. https://doi.org/10.22004/ag.econ.345278
  15. 15. Monteiro J, Barata J. Artificial intelligence in extended agri-food supply chain: a short review based on bibliometric analysis. Procedia Comput Sci. 2021;192:3020-9. https://doi.org/10.1016/j.procs.2021.09.074
  16. 16. Kraus S, Breier M, Lim WM, Dabić M, Kumar S, Kanbach D, et al. Literature reviews as independent studies: guidelines for academic practice. Rev Manag Sci. 2022;16(8):2577-95. https://doi.org/10.1007/s11846-022-00588-8
  17. 17. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https://doi.org/10.1136/bmj.n71
  18. 18. Pant SC, Saxena R, Pant DK, Singh R. Organic food consumption: a bibliometric–content analysis. J Consum Behav. 2024;23(5):2730-50. https://doi.org/10.1002/cb.2367
  19. 19. Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: An overview and guidelines. J Bus Res. 2021;133:285-96. https://doi.org/10.1016/j.jbusres.2021.04.070
  20. 20. Van Eck N, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523-38. https://doi.org/10.1007/s11192-009-0146-3
  21. 21. Badarinath KV, Kharol SK, Chand TK. Use of satellite data to study the impact of forest fires over the northeast region of India. IEEE Geosci Remote Sens Lett. 2007;4(3):485-9. https://doi.org/10.1109/LGRS.2007.896738
  22. 22. Santiteerakul S, Sopadang A, Yaibuathet Tippayawong K, Tamvimol K. The role of smart technology in sustainable agriculture: a case study of Wangree plant factory. Sustainability. 2020;12(11):4640. https://doi.org/10.3390/su12114640
  23. 23. Breiman L. Random forests. Mach Learn. 2001;45:5-32. https://doi.org/10.1023/A:1010933404324
  24. 24. Tehrany MS, Pradhan B, Mansor S, Ahmad N. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena. 2015;125:91-101. https://doi.org/10.1016/j.catena.2014.10.017
  25. 25. Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2(3):18-22.
  26. 26. Kamilaris A, Kartakoullis A, Prenafeta-Boldú FX. A review on the practice of big data analysis in agriculture. Comput Electron Agric. 2017;143:23-37. https://doi.org/10.1016/j.compag.2017.09.037
  27. 27. Kanade AK, Potdar MP, Balol G, Rathod N, Pooja, Huligol SN, et al. Artificial intelligence based precise disease detection in soybean using real time object detectors. Legume Res. 2025;LR5431:1-6. https://doi.org/10.18805/LR-5431
  28. 28. Singh UP, Chouhan SS, Jain S, Jain S. Multilayer convolution neural network for the classification of mango leaves infected by anthracnose disease. IEEE Access. 2019;7:43721-9. https://doi.org/10.1109/ACCESS.2019.2907383
  29. 29. Jiang P, Chen Y, Liu B, He D, Liang C. Real-time detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks. IEEE Access. 2019;7:59069-80. https://doi.org/10.1109/ACCESS.2019.2914929
  30. 30. Chlingaryan A, Sukkarieh S, Whelan B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review. Comput Electron Agric. 2018;151:61-9. https://doi.org/10.1016/j.compag.2018.05.012
  31. 31. Feng P, Wang B, Liu DL, Waters C, Yu Q. Incorporating machine learning with biophysical model can improve the evaluation of climate extremes impacts on wheat yield in south-eastern Australia. Agric For Meteorol. 2019;275:100-13. https://doi.org/10.1016/j.agrformet.2019.05.018
  32. 32. Rathod SA, Singh KN, Patil SG, Naik RH, Ray MR, Meena VS. Modeling and forecasting of oilseed production of India through artificial intelligence techniques. Indian J Agric Sci. 2018;88(1):22-7. https://doi.org/10.56093/ijas.v88i1.79546
  33. 33. Vapnik VN. The nature of statistical learning theory. 2nd edition. New York: Springer; 2000. https://doi.org/10.1007/978-1-4757-3264-1
  34. 34. Muangprathub J, Boonnam N, Kajornkasirat S, Lekbangpong N, Wanichsombat A, Nillaor P. IoT and agriculture data analysis for smart farm. Comput Electron Agric. 2019;156:467-74. https://doi.org/10.1016/j.compag.2018.12.011
  35. 35. Kim Y, Evans RG, Iversen WM. Remote sensing and control of an irrigation system using a distributed wireless sensor network. IEEE Trans Instrum Meas. 2008;57(7):1379-87. https://doi.org/10.1109/TIM.2008.917198
  36. 36. Kaack LH, Donti PL, Strubell E, Kamiya G, Creutzig F, Rolnick D. Aligning artificial intelligence with climate change mitigation. Nat Clim Change. 2022;12(6):518-27. https://doi.org/10.1038/s41558-022-01377-7
  37. 37. Adikari KE, Shrestha S, Ratnayake DT, Budhathoki A, Mohanasundaram S, Dailey MN. Evaluation of artificial intelligence models for flood and drought forecasting in arid and tropical regions. Environ Model Softw. 2021;144:105136. https://doi.org/10.1016/j.envsoft.2021.105136
  38. 38. Dikshit A, Pradhan B. Explainable AI in drought forecasting. Mach Learn App. 2021;6:100192. https://doi.org/10.1016/j.mlwa.2021.100192
  39. 39. Dhar P. The carbon impact of artificial intelligence. Nat Mach Intell. 2020;2(8):423-5. https://doi.org/10.1038/s42256-020-0219-9
  40. 40. Mulla DJ. Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst Eng. 2013;114(4):358-71. https://doi.org/10.1016/j.biosystemseng.2012.08.009
  41. 41. Talaviya T, Shah D, Patel N, Yagnik H, Shah M. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artif Intell Agric. 2020;4:58-73. https://doi.org/10.1016/j.aiia.2020.04.002
  42. 42. Das A, Saha S, Layek J, Babu S, Saxena R, Ramkrushna GI. Agricultural technologies. In: Trajectory of 75 years of Indian agriculture after independence. Singapore: Springer Nature Singapore; 2023. p. 57-78. https://doi.org/10.1007/978-981-19-7997-2_4
  43. 43. Fu Q, Wang Z, Jiang Q. Delineating soil nutrient management zones based on fuzzy clustering optimized by PSO. Math Comput Model. 2010;51(11-12):1299-305. https://doi.org/10.1016/j.mcm.2009.10.034
  44. 44. Alvim SJ, Guimarães CM, Sousa EF, Garcia RF, Marciano CR. Application of artificial intelligence for irrigation management: a systematic review. Agric Eng. 2022;42:e20210159. https://doi.org/10.1590/1809-4430-eng.agric.v42nepe20210159/2022
  45. 45. Al-Qammaz A, Darabkh KA, Abualigah L, Khasawneh AM, Zinonos Z. An AI based irrigation and weather forecasting system utilizing LoRaWAN and cloud computing technologies. In: 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). IEEE; 2021. p. 443-8. https://doi.org/10.1109/ElConRus51938.2021.9396431
  46. 46. Obaideen K, Yousef BA, AlMallahi MN, Tan YC, Mahmoud M, Jaber H, et al. An overview of smart irrigation systems using IoT. Energy Nexus. 2022;7:100124. https://doi.org/10.1016/j.nexus.2022.100124
  47. 47. Su J, Zhu X, Li S, Chen WH. AI meets UAVs: a survey on AI empowered UAV perception systems for precision agriculture. Neurocomputing. 2023;518:242-70. https://doi.org/10.1016/j.neucom.2022.11.020
  48. 48. Chen Q, Li L, Chong C, Wang X. AI‐enhanced soil management and smart farming. Soil Use Manag. 2022;38(1):7-13. https://doi.org/10.1111/sum.12771
  49. 49. Navinkumar TM, Kumar RR, Gokila PV. Application of artificial intelligence techniques in irrigation and crop health management for crop yield enhancement. Mater Today Proc. 2021;45:2248-53. https://doi.org/10.1016/j.matpr.2020.10.227
  50. 50. Haque MA, Marwaha S, Arora A, Paul RK, Hooda KS, Sharma A, et al. Image-based identification of maydis leaf blight disease of maize (Zea mays) using deep learning. Indian J Agric Sci. 2021;91(9):1362-9. https://doi.org/10.56093/ijas.v91i9.116089
  51. 51. Paul RK, Vennila S, Yadav SK, Bhat MN, Kumar M, Chandra P, et al. Weather based forecasting of sterility mosaic disease in pigeonpea (Cajanu cajan) using machine learning techniques and hybrid models. Indian J Agric Sci. 2020;90(10):1952-8. https://doi.org/10.56093/ijas.v90i10.107971
  52. 52. Himeur Y, Rimal B, Tiwary A, Amira A. Using artificial intelligence and data fusion for environmental monitoring: a review and future perspectives. Inf Fusion. 2022;86:44-75. https://doi.org/10.1016/j.inffus.2022.06.003
  53. 53. Silvestro D, Goria S, Sterner T, Antonelli A. Improving biodiversity protection through artificial intelligence. Nat Sustain. 2022;5(5):415-24. https://doi.org/10.1038/s41893-022-00851-6
  54. 54. Pant DS, Kansra P. Indian agriculture sector and blockchain technology: a systematic review envisaging business opportunities. Empir Econ Lett. 2023;22(1):21-35. https://doi.org/10.5281/zenodo.8266156
  55. 55. Daum T, Ravichandran T, Kariuki J, Chagunda M, Birner R. Connected cows and cyber chickens? Stocktaking and case studies of digital livestock tools in Kenya and India. Agric Syst. 2022;196:103353. https://doi.org/10.1016/j.agsy.2021.103353

Downloads

Download data is not yet available.