Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 4 (2025)

Digital technologies for precision agriculture: Current approaches, advances and future perspectives

DOI
https://doi.org/10.14719/pst.8318
Submitted
17 March 2025
Published
30-10-2025 — Updated on 11-11-2025
Versions

Abstract

The frequent occurrence of climatic extremes has been exerting significant pressure on the agricultural sector worldwide. This pressure forced the agriculturists to implement intensified agricultural practices such as digital technologies to cope with ever-increasing environmental stress factors. Given these challenges, this review aims to scrutinize current developments in digital technologies and the constraints hindering the adoption of digital agriculture. Digital technologies, such as Global Positioning System (GPS), Internet of Things (IoT), spectral sensors, unmanned aerial vehicles (UAVs), robotics, thermal infrared cameras (TIR), Artificial Intelligence (AI), virtual reality, Big Data, Metaverse, cloud computing, blockchain and digital mapping have been offering new pathways for companies to achieve economic, social and environmental purposes. Combined use of multiple technologies would be more beneficial for precision agriculture and economic efficiency. Advanced digital technologies are extensively adopted in many regions of the world, although there are significant differences among the countries in terms of the digital transformation. A bibliometric evaluation revealed that factors such as cost, ease of use of technical devices, technological infrastructure, farmers’ willingness, technology reliability and concerns about data security and privacy are key challenges in the adoption of digital agriculture. Therefore, policymakers should focus on particular challenges to promote the widespread adoption of digital technologies for sustainable agriculture. Sustainable agricultural production can be achieved through improved, precise use of affordable digital technologies and effective, site- and crop-specific data-driven decision support. Present developments demonstrate that AI and new autonomous approaches will become increasingly important for the detection and management of spatial variability. This review article focused on the bibliometric assessment of current approaches, feasibility, benefits, restrictions and future perspectives of digital technologies in increasing agricultural production. Overall investigations revealed that digitalization enables farmers to optimize resource use, enhance crop yields and address pressing challenges such as climate change and food security by integrating advanced technologies such as remote sensors, drones, robotics and data-driven decision-making tools. Data presented in this article is anticipated to guide agriculturists to speed up and employ the digital technology applications on the modern farming technologies.

References

  1. 1. Sadigov R. Rapid growth of the world population and its socioeconomic results. Scientific World Journal. 2022;1:8110229. https://doi.org/10.1155/2022/811022
  2. 2. Pawlak K, Kołodziejczak M. The role of agriculture in ensuring food security in developing countries: considerations in the context of the problem of sustainable food production. Sustainability. 2020;12(13):5488. https://doi.org/10.3390/su12135488
  3. 3. Afifa KA, Nazim H, Muhammad HA, Muhammad ZS. Air pollution and climate change as grand challenges to sustainability. Science of The Total Environment. 2024;928:172370. https://doi.org/10.1016/j.scitotenv.2024.172370
  4. 4. Erbasi A, Sabir A. Raising awareness on extending precision agriculture techniques for the effects of climatic changes on agricultural production. European Union Project. 2019;TR2013/0327.05.01-02/111:373p.
  5. 5. Babu GR, Gokuldhev M, Brahmanandam PS. Integrating IoT for soil monitoring and hybrid machine learning in predicting tomato crop disease in a typical south India station. Sensors. 2024;24(19):6177. https://doi.org/10.3390/s24196177
  6. 6. Liu J, Ma C, Wang S. Thermal-structure finite element simulation system architecture in a cloud-edge-end collaborative environment. Journal of Intelligent Manufacturing. 2023;36:1063-94. https://doi.org/10.1007/s10845-02302269-z
  7. 7. Stefko R, Frajtova Michalikova K, Strakova J, Novak A. Digital twin-based virtual factory and cyber-physical production systems, collaborative autonomous robotic and networked manufacturing technologies, and enterprise and business intelligence algorithms for industrial metaverse. Equilibrium. Quarterly Journal of Economics and Economic Policy. 2025;20(1):389-425. https://doi.org/10.24136/eq.3557
  8. 8. Dibbern T, Romani LAS. Main drivers and barriers to the adoption of digital agriculture technologies. Smart Agricultural Technology. 2024;8:100459. https://doi.org/10.1016/j.atech.2024.100459
  9. 9. Aslan B, Sabir A. Sensor technology for precision viticulture under the effects of climate change. In: 2nd International Conference on Agriculture, Food, Veterinary and Pharmacy Sciences. May 19-21, 2023 Belgrade. ICAFVP. p. 56-70.
  10. 10. Mu R, Rao J, Zhu J. Empowering breakthrough innovations through digital technology: The effects of digital technology dept and breath. Sustainability. 2025;17(5):1924. https://doi.org/10.3390/su17051924
  11. 11. Zengin H, Sabir A. Physiological and growth responses of grapevine rootstocks (Vitis spp.) to organic and synthetic mulch application in arid ecology under the effect of climate change. Journal of Central European Agriculture. 2022;23(3):655-64. https://doi.org/10.5513/JCEA01/23.3.3557
  12. 12. Ayaz M, Li CH, Ali Q, Zhao W, Chi YK, Shafiq M, et al. Bacterial and fungal biocontrol agents for plant disease protection: journey from lab to field, current status, challenges, and global perspectives. Molecules. 2023;28(18):6735. https://doi.org/10.3390/molecules28186735
  13. 13. Candiago S, Remondino F, De Giglio M, Dubbini M, Gattelli M. Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sensing. 2015;7(4):4026-47. https://doi.org/10.3390/rs70404026
  14. 14. Kucukbasmaci A, Sabir A. Long-term impact of deficit irrigation on the physiology and growth of grapevine cv. ‘Prima’ grafted on various rootstocks. Acta Scientiarum Polonorum Hortorum Cultus. 2019;18(4):57-70. https://dx.doi.org/10.24326/asphc.2019.4.6
  15. 15. Sujitha E, Valliammai A, Nagarajan M. Estimation of crop coefficient for radish using digital lysimeter under polyhouse. Plant Science Today. 2025;12(SP3). https://doi.org/10.14719/pst.8236
  16. 16. Faraboschi P, Frachtenberg E, Laplante P, Milojicic D, Saracco R. Digital transformation: lights and shadows. Computer. 2023;56(4):123-30. https://doi.org/10.1109/MC.2023.3241726
  17. 17. Chatterjee S, Kliestik T, Rowland Z, Bugaj M. Immersive collaborative business process and extended reality-driven industrial metaverse technologies for economic value co-creation in 3D digital twin factories. Oeconomia Copernicana. 2025;16(1):125-61. https://doi.org/10.24136/oc.3596
  18. 18. Minofar B, Milčić N, Maroušek J, Gavurová B, Maroušková A. Understanding the molecular mechanisms of interactions between biochar and denitrifiers in N₂O emissions reduction: pathway to more economical and sustainable fertilizers. Soil and Tillage Research. 2025;248:106405. https://doi.org/10.1016/j.still.2024.106405
  19. 19. Gayretli Y, Abdulhadi SAA, Demirkeser OK, Turkoglu I, Aslan B, Sabir A. Physiological responses of different grapevine genotypes (Vitis spp.) to variable temperatures artificially established as climate change scenery. AgroLife Scientific Journal. 2024;13:98-105. https://doi.org/10.17930/AGL2024110
  20. 20. Ali Z, Muhammad A, Lee N, Waqar M, Lee SW. Artificial intelligence for sustainable agriculture: a comprehensive review of AI-driven technologies in crop production. Sustainability. 2025;17(5):2281. https://doi.org/10.3390/su17052281
  21. 21. Kliestik T, Kral P, Bugaj M, Ďurana P. Generative artificial intelligence of things systems, multisensory immersive extended reality technologies, and algorithmic big data simulation and modelling tools in digital twin industrial metaverse. Equilibrium. 2024;19(2):429-61. https://doi.org/10.24136/eq.3108
  22. 22. Zvaríková K, Lubica Gajanova L, Horák J. Exploring CSR performance as a proxy for competitive ad-vantage across sectors in the Central European countries. Oeconomia Copernicana. 2024;15(3):991-1020. https://doi.org/10.24136/oc.3247
  23. 23. Huy TP, Hồng TP, Cuong NT, Tran P. AI innovation and economics growth: A global evidence. WSB Journal of Business and Finance. 2024;58(1):198-216. https://doi.org/10.2478/wsbjbf-2024-0017
  24. 24. Abiri R, Rizan N, Balasundram SK, Shahbazi AB, Abdul-Hamid H. Application of digital technologies for ensuring agricultural productivity. Helyon. 2023;9:e22601. https://doi.org/10.1016/j.heliyon.2023.e22601
  25. 25. Santesteban LG, Di Gennaro SF, Herrero-Langreo A, Miranda C, Royo JB, Matese A. High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard. Agricultural Water Management. 2017;183:49-59. https://doi.org/10.1016/j.agwat.2016.08.026
  26. 26. Hitimana E, Kuradusenge M, Sinayobye OJ, Ufitinema C, Mukamugema J, Murangira T, et al. Revolutionizing coffee farming: a mobile app with GPS-enabled reporting for rapid and accurate on-site detection of coffee leaf diseases using integrated deep learning. Software. 2024;3(2):146-68. https://doi.org/10.3390/software3020007
  27. 27. Bellon-Maurel V, Huyghe C. L’innovation technologique dans l’agriculture. Géoéconomie. 2016;80:159-80. https://doi.org/10.3917/geoec.080.0159
  28. 28. Coll-Ribes G, Torres-Rodríguez IJ, Grau A, Guerra E, Sanfeliu A. Accurate detection and depth estimation of table grapes and peduncles for robot harvesting, combining monocular depth estimation and CNN methods. Computers and Electronics in Agriculture. 2023;215:108362. https://doi.org/10.1016/j.compag.2023.108362
  29. 29. Talaviya T, Shah D, Patel N, Yagnik H, Shah M. Implementation of artificial intelligence in agriculture for optimization of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture. 2020;4:58-73. https://doi.org/10.1016/j.aiia.2020.04.002
  30. 30. Lamb D, Weedon MM, Bramley RG, Using remote sensing to predict grape phenolics and colour at harvest in a cabernet sauvignon vineyard: timing observations against vine phenology and optimising image resolution. Australian Journal of Grape and Wine Research. 2004;10:46-54. https://doi.org/10.1111/j.1755-0238.2004.tb00007.x
  31. 31. Guebsi R, Mami S, Chokmani K. Drones in precision agriculture: a comprehensive review of applications, technologies, and challenges. Drones. 2024;8(11):686. https://doi.org/10.3390/drones8110686
  32. 32. Osamy W, Khedr AM, Salim A, Al-Ali AI, El-Sawy, AA. Coverage, deployment and localization challenges in wireless sensor networks based on artificial intelligence techniques: a review. IEEE. 2022;10:30232-57. https://doi.org/10.1109/ACCESS.2022.3156729
  33. 33. Ebrahimi HP, Schillo RS, Bronson K. Systematic stakeholder inclusion in digital agriculture: a framework and application to Canada. Sustainability. 2021;13(12):6879. https://doi.org/10.3390/su13126879
  34. 34. Sabir A, Sahin Z. The response of soilless grown ‘Michele Palieri’ (Vitis vinifera L.) grapevine cultivar to deficit irrigation under the effects of different rootstocks. Erwerbs-Obstbau. 2018;60(Suppl 1):S21-7. https://doi.org/10.1007/s10341-018-0378-6
  35. 35. Zhang Y, Cui S, Yang B, Wang X, Liu T. Research on 3D printing concrete mechanical properties prediction model based on machine learning. Case Studies in Construction Materials. 2025;22:e04254. https://doi.org/10.1016/j.cscm.2025.e04254
  36. 36. Neethirajan S. Net Zero dairy farming—advancing climate goals with big data and artificial intelligence. Climate. 2024;12(2):15. https://doi.org/10.3390/cli12020015
  37. 37. Jover V, Sempere S, Ferrándiz S. The creation of virtual stands in the metaverse: applications for the textile sector. Electronics. 2025;14(2):359. https://doi.org/10.3390/electronics14020359
  38. 38. Mushi GE, Burgi P-Y, Serugendo GM. Designing a farmers digital information system for sustainable agriculture: the perspective of Tanzanian agricultural stakeholders. The Electronic Journal of Information Systems in Developing Countries. 2025;91:e12344. https://doi.org/10.1002/isd2.12344
  39. 39. Verdouw CN, Wolfert J, Beulens AJM, Rialland A. Virtualization of food supply chains with the Internet of Things. Journal of Food Engineering. 2016;176:128-36. https://doi.org/10.1016/j.jfoodeng.2015.11.009
  40. 40. Sabir A, Yazar K. Diurnal dynamics of stomatal conductance and leaf temperature of grapevines (Vitis vinifera L.) in response to daily climatic variables. Acta Scientiarum Polonorum Hortorum Cultus. 2015;14:3-15.
  41. 41. di Gennaro SF, Battiston E, di Marco S, Facini O, Matese A, Nocentini M, et al. Unmanned Aerial Vehicle (UAV)-based remote sensing to monitor grapevine leaf stripe disease within a vineyard affected by Esca complex. Phytopathologia Mediterranea. 2016;55:262-75.
  42. 42. Yuan H, Zhang J, Zhang H, Xu W, Peng J, Wang X, et al. Monitoring autumn phenology in understory plants with a fine-resolution camera. Remote Sensing. 2025;17(6):1025. https://doi.org/10.3390/rs17061025
  43. 43. Orphanidou C. A review of big data applications of physiological signal data. Biophysical Reviews. 2019;11(1):83-7. https://doi.org/10.1007/s12551-018-0495-3
  44. 44. Gupta RK. Revolutionizing agriculture: The magic of virtual reality (VR) and augmented reality (AR). Farm Chronicle. 2024;03(08):20-5. https://doi.org/10.5281/zenodo.15570294
  45. 45. Dolgui A, Ivanov D. Metaverse supply chain and operations management. International Journal of Production Research. 2023;61(23):8179-91. https://doi.org/10.1080/00207543.2023.2240900
  46. 46. Tudor C, Florescu M, Polychronidou P, Stamatiou P, Vlachos V, Kasabali K. Cloud adoption in the digital era: an interpretable machine learning analysis of national readiness and structural disparities across the EU. Applied Sciences. 2025;15(14):8019. https://doi.org/10.3390/app15148019
  47. 47. Zarbà C, Chinnici G, Matarazzo A, Privitera D, Scuderi A. The innovative role of blockchain in agri-food systems: a literature analysis. Food Control. 2024;164:110603. https://doi.org/10.1016/j.foodcont.2024.110603
  48. 48. Ramalingam K, Chidambaram PP, Mylsamy J, Moorthi NR, Ramasamy J, Dhanaraju M, et al. Digital soil mapping of soil subgroup class information in Coimbatore district using decision tree approach. Plant Science Today. 2025;12(2). https://doi.org/10.14719/pst.5295
  49. 49. Vasumathi V, Manivannan V, Raja R, Ragunath KP, Sakthivel N, Balachandar D, et al. A review on advancing agricultural practices using photogrammetric images. Plant Science Today. 2025. https://doi.org/10.14719/pst.8813
  50. 50. Bindeeba DS, Tukamushaba EK, Bakashaba R. Digital transformation and its multidimensional impact on sustainable business performance: evidence from a meta-analytic review. Future Business Journal. 2025;11:90. https://doi.org/10.1186/s43093-025-00511-z
  51. 51. Aleca OE, Mihai F. The role of digital infrastructure and skills in enhancing labor productivity: Insights from Industry 4.0 in the European Union. Systems. 2025;13(2):113. https://doi.org/10.3390/systems13020113
  52. 52. Vărzaru AA, Bocean CG. Digital transformation and innovation: the influence of digital technologies on turnover from innovation activities and types of innovation. Systems. 2024;12(9):359. https://doi.org/10.3390/systems12090359
  53. 53. Najem, R., Bahnasse, A., Fakhouri Amr, M. Talea M. Advanced AI and big data techniques in E-finance: a comprehensive survey. Discover Artificial Intelligence 2025;5:102. https://doi.org/10.1007/s44163-025-00365-y
  54. 54. Iliopoulos C, Theodorakopoulou I, Giotis T, Brunori G. Perceptions of costs and benefits of farm digitalization in Europe. International Food and Agribusiness Management Review. 2025;28(3):543-64. https://doi.org/10.22434/ifamr.1274
  55. 55. Meng Y, Dong L. Digital pathways to sustainable agriculture: examining the role of agricultural digitalization in green development in China. Sustainability. 2025;17(8):3652. https://doi.org/10.3390/su17083652
  56. 56. Yuan F, Ospina R, Perumal AB, Noguchi N, He Y, Liu Y. Smart agriculture in Asia. Plant Communications. 2025;6(7):101377. https://doi.org/10.1016/j.xplc.2025.101377
  57. 57. Suranto B, Kovač N, Haryono K, Rahman SFA, Shukri AFM, Suder M, et al. State of digitalization in the Southeast Asia region – bibliometric analysis. Quality and Quantity. 2025. https://doi.org/10.1007/s11135-025-02296-3
  58. 58. Egbeleo E, Sodokin K. Digital transformation, institutional quality and productivity in Sub-Saharan Africa. Cogent Economics & Finance. 2025;13(1):2519924. https://doi.org/10.1080/23322039.2025.2519924
  59. 59. Hardy A, Ma Y, Ooi CS. Tik tokking Antarctica: re-presentations of place. The Polar Journal. 2025;15(1):55-80. https://doi.org/10.1080/2154896X.2025.2492487
  60. 60. Menze S, Macaulay GJ, Zhang G, Lowther AD, Krafft BA. KRILLSCAN: An automated open-source software for processing and analysis of echosounder data from the Antarctic krill fishery. Fisheries Management and Ecology. 2024;32(1):e12739. https://doi.org/10.1111/fme.12739
  61. 61. Sabri S, Kurnia S. Digital transformation of urban planning in Australia: Influencing factors and key challenges. arXiv. 2025;2506:13333. https://doi.org/10.48550/arXiv.2506.13333
  62. 62. Gupta M, Arif RN. Digital shift in construction in Australia: unlocking potentials with AI and blockchain. Journal of Resilient Economies. 2024;4(2):1-8. https://doi.org/10.25120/jre.4.2.2024.4155
  63. 63. Rissing A, Spangler K. How do we know what we grow? Interrogating the datafication of agricultural landscapes in the United States. Economic Anthropology. 2025;12(2):e700032025. https://doi.org/10.1002/sea2.70003
  64. 64. Velden D, Klerkx L, Dessein J, Debruyne L. Governance by satellite: remote sensing, bureaucrats and agency in the common agricultural policy of the European Union. Journal of Rural Studies. 2025;114:103558. https://doi.org/10.1016/j.jrurstud.2024.103558
  65. 65. Osei DB. Digital infrastructure and innovation in Africa: Does human capital mediates the effect? Telematics and Informatics. 2024;89:102111. https://doi.org/10.1016/j.tele.2024.102111
  66. 66. Ruder SL, Wittman H, Duncan E, Satterfield T. Sociotechnical imaginaries for Canadian agri-food futures: a farmer survey. Agriculture and Human Values. 2025;42:1439-56. https://doi.org/10.1007/s10460-024-10675-z
  67. 67. Tubaro P, Casilli AA, Fernández Massi M, Longo J, Torres Cierpe J, Viana Braz M. The digital labour of artificial intelligence in Latin America: a comparison of Argentina, Brazil, and Venezuela. Globalizations. 2025;1-16. https://doi.org/10.1080/14747731.2025.2465171
  68. 68. Feng X, Bi S, Li H, Qi Y, Chen S, Shao L. Soil moisture forecasting for precision irrigation management using real-time electricity consumption records. Agricultural Water Management. 2024;291:108656. https://doi.org/10.1016/j.agwat.2023.108656
  69. 69. Mendes MP, Matias M, Gomes RC, Falcão AP. Delimitation of low topsoil moisture content areas in a vineyard using remote sensing imagery (Sentinel-1 and Sentinel-2) in a Mediterranean-climate region. Soil and Water Research. 202;16:85-94. https://doi.org/10.17221/101/2019-SWR
  70. 70. Šupčík A, Milics G, Matečný I. Predicting grape yield with vine canopy morphology analysis from 3D point clouds generated by UAV imagery. Drones. 2024;8(6):216. https://doi.org/10.3390/drones8060216
  71. 71. Ballesteros R, Intrigliolo DS, Ortega JF, Ramírez-Cuesta JM, Buesa I, Moreno MA. Vineyard yield estimation by combining remote sensing, computer vision and artificial neural network techniques. Precision Agriculture. 2020;21:1242-62.
  72. 72. del Cerro J, Ulloa CC, Barrientos A, de Léon Rivas J. Unmanned aerial vehicles in agriculture: a survey. Agronomy. 2021;11(2):203. https://doi.org/10.3390/AGRONOMY11020203
  73. 73. Barnaba FE, Bellincontro A, Mencarelli F. Portable NIR‐AOTF spectroscopy combined with winery FTIR spectroscopy for an easy, rapid, in‐field monitoring of Sangiovese grape quality. Journal of the Science of Food and Agriculture. 2014;94(6):1071-7. https://doi.org/10.1002/jsfa.6391
  74. 74. Maroušek J, Žáková K. Techno-economic perspective on the use of pyrolysis oil from digestate in spark-ignition engines. Aircraft Engineering and Aerospace Technology. https://doi.org/10.1108/AEAT-01-2025-0020
  75. 75. Izquierdo-Bueno I, Moraga J, Cantoral JM, Carbú M, Garrido C, González-Rodríguez VE. Smart viniculture: applying artificial intelligence for improved winemaking and risk management. Applied Sciences. 2024;14(22):10277. https://doi.org/10.3390/app142210277
  76. 76. Samphao A, Butmee P, Saejueng P, Pukahuta C, Švorc Ľ, Kalcher K. Monitoring of glucose and ethanol during wine fermentation by bienzymatic biosensor. Journal of Electroanalytical Chemistry. 2018;816:179-88. https://doi.org/10.1016/j.jelechem.2018.03.052
  77. 77. Comba L, Biglia A, Ricauda Aimonino D, Tortia C, Mania E, Guidoni S, et al. Leaf area index evaluation in vineyards using 3D point clouds from UAV imagery. Precision Agriculture. 2020;21:881-96. https://doi.org/10.1007/s11119-019-09699-x
  78. 78. Pivoto DGS, de Almeida LFF, da Rosa RR, Rodrigues JJPC, Lugli AB, Alberti AM. Cyber-physical systems architectures for industrial internet of things applications in Industry 4.0: a literature review. Journal of Manufacturing Systems. 2021;58:176-92. https://doi.org/10.1016/j.jmsy.2020.11.017
  79. 79. Sun ZF, Du KM, Zhang FX. Perspectives of research and application of big data on smart agriculture. Journal of Agricultural Science and Technology. 2013;15(6):63-71. https://doi.org/10.3969/j.issn.1008-0864.2013.06.10
  80. 80. Wolfert S, Ge L, Verdouw C, Bogaardt MJ. Big data in smart farming. A review. Agricultural Systems. 2017;153:69-80. https://doi.org/10.1016/j.agsy.2017.01.023
  81. 81. al-Chalabi M. Vertical farming: Skyscraper sustainability? Sustainable Cities and Society. 2015;18:74-7. https://doi.org/10.1016/j.scs.2015.06.003
  82. 82. Benyam A, Soma T, Fraser E. Digital agricultural technologies for food loss and waste prevention and reduction: global trends, adoption opportunities and barriers. Journal of Cleaner Production. 2021;323:129099. https://doi.org/10.1016/J.JCLEPRO.2021.129099
  83. 83. Yatribi T. Factors affecting precision agriculture adoption: A systematic literature review. Economics. 2020;8(2):103-21. https://doi.org/10.2478/eoik-2020-0013
  84. 84. Chawade A, van Ham J, Blomquist H, Bagge O, Alexandersson E, Ortiz R. High-throughput field-phenotyping tools for plant breeding and precision agriculture Agronomy. 2019;9(5):258. https://doi.org/10.3390/agronomy9050258
  85. 85. Gebresenbet G, Bosona T, Patterson D, Persson H, Fischer B, Mandaluniz N, et al. A concept for application of integrated digital technologies to enhance future smart agricultural systems. Smart Agricultural Technology. 2023;5:100255. https://doi.org/10.1016/j.atech.2023.100255
  86. 86. Jouanjean MA, Casalini F, Wiseman L, Gray E. Issues around data governance in the digital transformation of agriculture: the farmers’ perspective. OECD Food, Agriculture and Fisheries Papers; 2020. https://doi.org/10.1787/53ecf2ab-en
  87. 87. Janssen M, Brous P, Estevez E, Barbosa LS, Janowski T. Data governance: organizing data for trustworthy Artificial Intelligence. Government Information Quarterly. 2020;37(3):101493. https://doi.org/10.1016/j.giq.2020.101493
  88. 88. Cao K, Liu Y, Meng G, Sun Q. An overview on edge computing research. IEEE. 2020;8:85714-28. https://doi.org/10.1109/ACCESS.2020.2991734
  89. 89. Poorna TK, Senthilkumar M, Manimekalai R, Saravanan PA, Vanitha G. Exploring the factors influencing the adoption of smart farming technologies in agriculture - A bibliometric analysis literature review. Plant Science Today. 2025;12(3). https://doi.org/10.14719/pst.8325
  90. 90. Sai S, Kumar S, Gaur A, Goyal S, Chamola V, Hussain A. Unleashing the power of generative AI in Agriculture 4.0 for smart and sustainable farming. Cognitive Computation. 2025;17:63. https://doi.org/10.1007/s12559-025-10420-6

Downloads

Download data is not yet available.