Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

In vitro response of maize (Zea mays L.) hybrids to polyethylene glycol induced drought using the slanting plate technique

DOI
https://doi.org/10.14719/pst.8321
Submitted
17 March 2025
Published
28-10-2025

Abstract

Maize is an important cereal crop of the world and in India, it is grown in the rainy and post-rainy seasons. In the rainy season, among other stresses affecting the maize productivity, drought is significant under a changed climatic scenario. Although maize is sensitive to drought at all growth stages, drought at the seedling stage results in a poor crop stand and establishment, significantly impacting productivity. Identifying moisture-stress tolerant maize inbred lines for seedling stage drought situations and using those in developing drought-tolerant hybrids play a pivotal role in increasing maize yield. In this study, a set of hybrids derived from tolerant and susceptible inbreds was studied for their response under in vitro seedling drought induced by polyethylene glycol, employing the slanting plate technique. Substantial variability among different polyethylene glycol levels (0, 10 and 20 %), maize hybrids and interaction between polyethylene glycol levels and maize hybrids was observed for germination and seedling traits, indicating differential response of the maize hybrids. Higher genetic advance with higher heritability was observed for root and shoot length, indicating the preponderance of additive gene action governing these traits. It was interesting to note that the germination ability of seeds was significantly reduced in all hybrids at 20 % polyethylene glycol, following poor seedling vigour that was reflected in diminished expression of seedling traits. The hybrids, GPM 114 × CML 451 and GPM 114 × CAL 1426-2, involving seedling drought-tolerant parents, showed lesser reduction for root length, suggesting these drought-tolerant lines can be used as donors for the development of seedling drought-tolerant hybrids suitable for cultivation in rainfed eco-systems. It is evident from the present study that screening maize genotypes at 20 % polyethylene glycol would help in identifying reliable genotypes for seedling drought tolerance.

References

  1. 1. Canadian Food Inspection Agency. The biology of Zea mays (L.) (maize). BIO1994-11 [Internet]. Ottawa: CFIA; [cited 2025 Aug 11]. Available from: https://inspection.canada.ca/en/plant-varieties/plants-novel-traits/applicants/directive-94-08/biology-documents/zea-mays-maize
  2. 2. Food and Agriculture Organization of the United Nations. FAOSTAT [Internet]. Rome: FAO; [cited 2025 Aug 11]. Available from: https://www.fao.org/faostat
  3. 3. Blunden J, Adusumilli S, Agyakwah W, Abida A, Ades M, Adler R, et al. State of the Climate in 2022. Bull Amer Meteor Soc. 2023;104(9):1-516.https://doi.org /10.1175 /2024 BAMSStateofthe Climate.1
  4. 4. Chuphal DS, Kushwaha AP, Aadhar S, Mishra V. Drought Atlas of India, 1901–2020. Sci Data. 2024;11:7. https://doi.org/10.1038/s41597-023-02856-y
  5. 5. Tai FJ, Yuan ZL, Wu L, Zhao PF, Hu L, Wang W. Identification of membrane proteins in maize leaves, altered in expression under drought stress through polyethylene glycol treatment. Plant Omics. 2011;4(5):250–6.
  6. 6. India Agri Stat. Area, production and productivity of cereal crops [Internet]. 2021 [cited 2025 Aug 11]. Available from: https://data.desagri.gov.in/website/crops-report-district-level-web
  7. 7. Spinoni J, Naumann G, Carrao H, Barbosa P, Vogt J. World drought frequency, duration and severity for 1951–2010. Int J Climatol. 2014;34: 2792–804. https://doi.org/10.1002/joc.3875
  8. 8. Ahmad S, Ahmad R, Ashraf MY, Ashraf M, Waraich EA. Sunflower (Helianthus annuus L.) response to drought stress at germination and growth stages. Pak J Bot. 2009;41:647–54.
  9. 9. Khayatnezhad M, Gholamin R, Jamaatie-Somarin SH, Zabihi-Mahmoodabad R. Effects of PEG stress on corn cultivars (Zea mays L.) at germination stage. J Appl Sci. 2010;11(5):504–6.
  10. 10. Tsago Y, Andargie M, Takele A. In vitro selection of sorghum (Sorghum bicolor (L) Moench) for polyethylene glycol (PEG) induced drought stress. Plant Sci Today. 2014;1(2):62–68. https://doi.org/10.14719/pst.2014.1.2.14
  11. 11. Zeid IM, Nermin AE. Responses of drought tolerant varieties of maize to drought stress. Pak J Biol Sci. 2001;4:779–84. https:// doi.org /10.3923 /pjbs.2001.779.784
  12. 12. Meneses CHSG, Bruno RLA, Fernandes PD, Pereira WE, Lima LHGM, Lima MMA, et al. Germination of cotton cultivar seeds under water stress induced by poly ethylene glycol glycol-6000. Sci Agric. 2011;68 (2):131 131–8. https://doi.org/10.1590/S0103 S0103-90162011000200001
  13. 13. Oliveira AB, Gomes Gomes-Filho E. Germinacao e vigor de sementes de sorgo forrageiro sob estresse hidrico e salino. Rev Bras Sementes. 2009;31(3):48 48–56. https://doi.org/10.1590/S0101 S0101-31222009000300005
  14. 14. Qayyum A, Shahzad A, Shoaib L, Waqas M, Etrat N, Hafiz MS, et al. Screening for drought tolerance in maize (Zea mays L.) hybrids at an early seedling stage. Afr J Agri Res. 2012;7(24):3594–604. https://doi.org /10.5897/AJAR11.1475
  15. 15. Turkan I, Bor M, Zdemir F, Koca H. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius and drought-sensitive P. vulgaris L subjected to polyethylene glycol mediated water stress. Plant Sci. 2005;168:223–31. https://doi.org/10.1016/j.plantsci.2004.07.032
  16. 16. Kauser R, Athar HUR, Ashraf M. Chlorophyll fluorescence: A potential indicator for rapid assessment of water stress tolerance in canola (Brassica napus L.). Pak J Bot. 2006;38(5 S):1501–09.
  17. 17. Kulkarni M, Deshpande U. In Vitro screening of tomato genotypes for drought resistance using polyethylene glycol. Afr J Biotechnol. 2007;6:691–6.
  18. 18. Landjeva S, Neumann K, Lohwasser U, Borner A. Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress. Biologia Plantarum. 2008;52:259–66. https://doi.org/10.1007/s10535-008-0056-x
  19. 19. Khodarahmpour Z. Effect of drought stress induced by polyethylene glycol (PEG) on germination indices in corn (Zea mays L.) hybrids. Afr J Biotecnol. 2011;10(79):18222–7. https://doi.org/10.5897/AJB11.2639
  20. 20. Almaghrabi OA. Impact of drought stress on germination and seedling growth parameters of some wheat cultivars. Life Sciences J. 2012;9(1):590–98.
  21. 21. Badr A, El-Shazly HH, Tarawneh RA, Borner A. Screening for drought tolerance in maize (Zea mays L.) germplasm using germination and seedling traits under simulated drought conditions. Plants. 2020;9(5):565. https://doi.org/10.3390/plants9050565
  22. 22. Queiroz MS, Oliveira CES, Steiner F, Zuffo AM, Zoz T, Vendruscolo EP, et al. Drought stresses on seed germination and early growth of maize. J Agri Sci. 2019; 11(2):310 310–18. https://doi.org/10.5539/ jas.v11n2p310
  23. 23. Petcu E, Martura T, Ciocazanu I, Iordan HL, Badut C, Urechean V. The Effect of water stress induced with PEG solution on maize seedlings. Romanian Agric Res. 2018;35:21-8. https://doi.org/10.59665/rar3504
  24. 24. Raj RN, Gokulakrishnan J, Prakash M. Assessing drought tolerance using PEG-6000 and molecular screening by SSR markers in maize (Zea mays L.) hybrids. Maydica. 2019;64(2):1-7.
  25. 25. Bukhari B, Sabaruddin Z, Sufardi S, Syafruddin S. Drought test resistance of maize varieties through PEG 6000. IOP Conference Series: Earth Environ Sci. 2020;644(1):12040–6. https://doi.org/10.1088/1755-1315/644/1/012040
  26. 26. Condon AG, Richards RA, Rebetzke GJ, Farquhar GD. Breeding for high water-use efficiency. J Exptl Bot. 2004;55(407):2447–60. https://doi.org/10.1093/jxb/erh277
  27. 27. Monneveux P, Sanchez C, Tiessen A. Breeding for drought tolerance in maize (Zea mays L.): lessons from the past for the future. Plant Sci. 2008;174(4):345–56. https://doi.org/ 10.1016 /j.plantsci. 2008.01.009
  28. 28. Marousek J, Minofar B, Marouksova A, Strunecky O, Gaurovva B. Environmental and economic advantages of production and application of digestive biochar. Environmental Tech and Innov. 2023;30(10309). https://doi.org/10.1016/j.eti.2023.103109
  29. 29. Kavya S. Genetic analysis of drought tolerance in maize [dissertation]. Dharwad (India): University of Agricultural Sciences; 2022. 284 p.
  30. 30. Michael BE, Kaufmann MR. The osmotic potential of polyethylene glycol 6000. Plant Phy. 1973;51:914–6. https://doi.org/10.1104/pp.51.5.914
  31. 31. Abdul-Baki A, Anderson JD. Vigor determination in soybean seed by multiple criteria. Crop Sci. 1973;13:630–3. https:// doi.org /10.2135 /cropsci1973.0011183X001300060013x 32. Panse VG, Sukhatme PV. Statistical methods for agricultural workers, ICAR, New Delhi. 1967;167–74.
  32. 33. Bibi AHA, Sadaqat HM, Akram Mohammed MI. Physiological markers for screening sorghum (Sorghum bicolor) germplasm under water stress condition. Int J Agric and Bio. 2010;12: 451–5.
  33. 34. Rajarajan KK, Ganesamurthy A, Yuvaraja, Selvi B. Stay-green and other physiological traits as efficient selection criteria for grain yield under drought stress condition in sorghum (Sorghum bicolor L. Moench). Electronic J Plant Breed. 2017;8:586–90. https://doi.org/10.5958/0975-928X.2017.00089.8
  34. 35. Tripathi MP. Development of drought and low N stress tolerant maize cultivars for Terai and Mid hills of Nepal. National Maize Research Programme. 2017;103–7.
  35. 36. Alvarez LI, de la Roza-Delgado B, Reigosa MJ, Revilla P, Pedrol N. A Simple, fast and accurate screening method to estimate maize (Zea mays L.) tolerance to drought at early stages. Maydica. 2018;62(3):12–20.
  36. 37. Nusrat IU, Ali G, Dar ZA, Maqbool S, Khulbe RK, Bhat A. Effect of PEG induced drought stress on maize (Zea mays L.) inbreds. Plant Archives. 2019;19:1677–81.
  37. 38. Dhanda SS, Sethi GS, Behl RK. Indices of drought tolerance in wheat genotypes at early stages of plant growth. J Agron Crop Sci. 2004;190:6–12. https://doi.org/10.1111/j.1439-037X.2004.00592.x
  38. 39. Wu Y, William G, Sharp RE, Hetherington PR, Fry S. Root growth maintenance at low water potentials. I. Increased activity of xyloglucan endotransglycosylase and its possible regulation by abscisic acid. Plant Phy. 1994;106:607–15. https://doi.org/10.1104/pp.106.2.607
  39. 40. Zaidi PH, Rafique S, Singh NN. Response of maize (Zea mays L.) genotypes to drought stress in relation to their physiological and morphological characteristics at seedling stage. Indian J Genet Plant Breed. 2003;63(4):341–6.
  40. 41. Walne CH, Thenveettil N, Ramamoorthy P, Bheemanahalli R, Reddy KN, Reddy KR. Unveiling drought-tolerant corn hybrids for early-season drought resilience using morpho-physiological traits. Agriculture. 2024;14:425. https://doi.org/10.3390/agriculture14030425
  41. 42. Wu X, Feng H, Wu D, Yan S, Zhang P, Wang W, et al. Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance. Genome Biol. 2021;22:185. https://doi.org /10.1186 /s13059-021-02377-0

Downloads

Download data is not yet available.