Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Development and characterization of polyherbal silver nanoparticles from Lepidagathis species for targeted neuroinflammation therapy

DOI
https://doi.org/10.14719/pst.8323
Submitted
17 March 2025
Published
07-07-2025 — Updated on 14-07-2025
Versions

Abstract

This study aimed to synthesize and evaluate polyherbal silver nanoparticles (AgNPs) using ethanol extracts of Lepidagathis pungens, Lepidagathis brevispica and Lepidagathis cinerea for their potential in mitigating neuroinflammation. Neuroinflammation is a critical factor in the pathogenesis of neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. Conventional treatments are often limited by poor blood-brain barrier (BBB) permeability and undesirable side effects, highlighting the need for alternative therapeutic strategies. Plant-based nanoparticles present a promising approach due to their biocompatibility and the synergistic effects of phytochemicals. In this study, ethanol extracts were obtained via soxhlet extraction and polyherbal AgNPs were synthesized using a green reduction method with silver nitrate. The nanoparticles were characterized using Ultraviolet-Visible (UV-Vis) spectroscopy, Fourier Transform Infrared (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscope (TEM). In vitro assays assessed nitric oxide inhibition and pro-inflammatory cytokines (TNF-α, IL-6), while in vivo efficacy was evaluated using a lipopolysaccharide (LPS)-induced neuroinflammation mouse model. The polyherbal AgNPs significantly reduced pro-inflammatory cytokines (TNF-α by 70 %, IL-6 by 65 %), oxidative stress markers (Reactive Oxygen Species by 50 %, Malondialdehyde by 45 %) and neuronal apoptosis (by 50 %). Concurrently, there was a marked increase in antioxidant enzyme activity (Superoxide dismutase by 40 %, catalase by 35 %) and enhanced synaptic density. These findings demonstrate that polyherbal AgNPs exhibit potent anti-inflammatory and neuroprotective effects, offering promise as a therapeutic candidate for neuroinflammatory and neurodegenerative conditions. Future studies should focus on elucidating underlying molecular mechanisms through techniques such as Western blotting or Quantitative Polymerase Chain Reaction (qPCR), evaluating long-term safety and progressing toward clinical application.

References

  1. 1. Akbar RSA, Averal HI, Siddhaiayan E. Antibacterial activity of synthesized silver nanoparticle from polyherbal extract against human pathogens. Trends Sci. 2022. https://doi.org/10.48048/tis.2022.4643
  2. 2. Afshin N, Mushtaq N, Ahmed M, Sher N, Alhag SK, Khalil FM, et al. Biogenic synthesis of AgNPs via polyherbal formulation: Mechanistic neutralization and toxicological impact on acetylcholinesterase from Bungarus sindanus venom. Microsc Res Tech. 2025; 88(2):356-68. https://doi.org/10.1002/jemt.24701
  3. 3. Wu T, Tang M. The inflammatory response to silver and titanium dioxide nanoparticles in the central nervous system. Nanomed. 2018;13(2):233-49. https://doi.org/10.2217/nnm-2017-0270
  4. 4. Dąbrowska-Bouta B, Sulkowski G, Orzelska-Górka J, Strużyńska L, Kędzierska E, Biała G. Response of immature rats to a low dose of nanoparticulate silver: Alterations in behavior, cerebral vasculature-related transcriptomeand permeability. Ecotoxicol Environ Saf. 2020;208:111416. https://doi.org/10.1016/j.ecoenv.2020.111416
  5. 5. Sasidharan J, Meenakshi RV, SureshKumar P. Green synthesis, characterization and evaluation of in vitro antioxidant & anti-diabetic activity of nanoparticles from a polyherbal formulation. J Environ Nanotechnol. 2018; 7(3):51-9. https://doi.org/10.13074/jent.2018.09.183316
  6. 6. Shang M, Niu S, Chang X, Li J, Zhang W, Guo M, et al. Silver nanoparticle-induced impaired autophagic flux and lysosomal dysfunction contribute to the microglia inflammation polarization. Food Chem Toxicol. 2022;170:113469. https://doi.org/10.2139/ssrn.4100326
  7. 7. Yang L, Cui Y, Liang H, Li Z, Wang N, Wang Y, et al. Multifunctional selenium nanoparticles with different surface modifications ameliorate neuroinflammation through the gut microbiota-NLRP3 inflammasome-brain axis in APP/PS1 mice. ACS Appl Mater Interfaces. 2022;14(27):30557-70. https://doi.org/10.1021/acsami.2c06283
  8. 8. Afshin N, Mushtaq N, Ahmed M, Sher N, Alhag SK, Khalil FMA, et al. Biogenic synthesis of AgNPs via polyherbal formulation: Mechanistic neutralization and toxicological impact on acetylcholinesterase from Bungarus sindanus venom. Microsc Res Tech. 2025;88(2):356-68. https://doi.org/10.1002/jemt.24701
  9. 9. Krishnamoorthy K, Jayaraman S, Krishnamoorthy R, Manoharadas S, Alshuniaber MA, Vikas B, et al. Green synthesis and evaluation of anti-microbial, antioxidant, anti-inflammatory, and anti-diabetic activities of silver nanoparticles from Argyreia nervosa leaf extract: an in vitro study. J King Saud Univ Sci. 2023;35(10):102955. https://doi.org/10.1016/j.jksus.2023.102955
  10. 10. Gomathi M, Rajkumar R, Ravichandran K. Green synthesis and characterization of silver nanoparticles using Argyreia nervosa leaf extract and their biological activities. J King Saud Univ Sci. 2023;35(4):102702.
  11. 11. Singh A, Yadav V, Mishra RK, Prakash S. Green synthesis of silver nanoparticles using Xanthium strumarium leaf extract for anti-inflammatory and anticancer applications. New J Chem. 2024;48:2591–2602. https://doi.org/10.1039/D4NJ01049C
  12. 12. Elmongy N, Meawad SB, Elshora S, et al. Platelet-rich plasma ameliorates neurotoxicity induced by silver nanoparticles in male rats via modulation of apoptosis, inflammation and oxidative stress. J Biochem Mol Toxicol. 2023;37. https://doi.org/10.1002/jbt.23420
  13. 13. Chittineedi P, Mohammed A, Abdul Razab MK, et al. Polyherbal formulation conjugated to gold nanoparticles induced ferroptosis in drug-resistant breast cancer stem cells through ferritin degradation. Front Pharmacol. 2023;14. https://doi.org/10.3389/fphar.2023.1134758
  14. 14. Janicka M, Ranoszek-Soliwoda K, Chodaczek G, et al. Functionalized noble metal nanoparticles for the treatment of herpesvirus infection. Microorganisms. 2022;10. https://doi.org/10.3390/microorganisms10112161
  15. 15. Philip P, Jose T, Sarath KS, Kuriakose S. Green synthesized silver nanoparticles incorporated electrospun poly (methyl methacrylate) nanofibers with different architectures for ophthalmologic alternatives. J Bioact Compat Polym. 2021;36:93-110. https://doi.org/10.1177/0883911521997856
  16. 16. Dziendzikowska K, Wilczak J, Grodzicki W, et al. Coating-dependent neurotoxicity of silver nanoparticles—An in vivo study on hippocampal oxidative stress and neurosteroids. Int J Mol Sci. 2022;23(3):1365. https://doi.org/10.3390/ijms23031365
  17. 17. Zhang W, Li W, Li J, et al. Neurobehavior and neuron damage following prolonged exposure of silver nanoparticles with/without polyvinylpyrrolidone coating in Caenorhabditis elegans. J Appl Toxicol. 2021;41(10):2055-67. https://doi.org/10.1002/jat.4197
  18. 18. Hamedi S, Shojaosadati S, Shokrollahzadeh S, Hashemi-Najafabadi S. Mechanism study of silver nanoparticle production using Neurospora intermedia. IET Nanobiotechnol. 2017;11(2):157-163. https://doi.org/10.1049/iet-nbt.2016.0038
  19. 19. Balraj S, Aiyavu C, Kalaimathi J, Jeyaprakash K. Novel insight to neuroprotective potential of silver nanoparticles using flavonoid diosmin and their antibacterial effects in SH-SY5Y neuroblastoma cells. Neurochem Int. 2022; https://doi.org/10.1016/j.neuint.2022.105335
  20. 20. Alkhalaf MI, Hussein RH, Hamza A. Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi J Biol Sci. 2020;27(9):2410-9. https://doi.org/10.1016/j.sjbs.2020.05.005
  21. 21. Yang L, Cui Y, Liang H, et al. Multifunctional selenium nanoparticles with different surface modifications ameliorate neuroinflammation through the gut microbiota-NLRP3 inflammasome-brain axis in APP/PS1 mice. ACS Appl Mater Interfaces. 2022. https://doi.org/10.1021/acsami.2c06283
  22. 22. Synthesis of nonspherical nanoparticles by reducing silver neodecanoate extract with benzyl alcohol. Theor Found Chem Eng. 2017;51(4):557-62. https://doi.org/10.1134/S0040579517040145
  23. 23. Akther T, Khan MS, Srinivasan H. Novel silver nanoparticles synthesized from anthers of Couroupita guianensis control growth and biofilm formation in human pathogenic bacteria. Nano Biomed Eng. 2018;10(3):250-7 https://doi.org/10.5101/NBE.V10I3.P250-257
  24. 24. Green synthesis of silver nanoparticles from Alternanthera pungens Kunth leaves extract and its antimicrobial activity. J Environ Sci Pollut Res. 2019. https://doi.org/10.1007/s11356-019-05860-8
  25. 25. Ittiyavirah S, Hameed J. Biosynthesis, characterization and evaluation of silver nanoparticles of Alternanthera sessilis (Linn.) and its ethanolic extract in a high-fat diet-induced dementia model. Biomed Res Int. 2017;42. https://doi.org/10.1155/2017/9538751
  26. 26. Obedoulaye B, Raj S, Sucharitha P, et al. Green synthesis of polyherbal silver nanoparticles from Rosa gallia officinalis, Citrus sinensis and Solanum tuberosum extract for antioxidant potency. Int J Res Pharm Sci. 2020. https://doi.org/10.26452/ijrps.v11i4.3800
  27. 27. Bhusnure OG, Kuthar VS, Gholve SB, et al. Green synthesis of silver nanoparticles using Catharanthus roseus extract for pharmacological activity. Int J Pharm Pharm Sci. 2017;10(4):77-88. https://doi.org/10.15623/ijpp.2017.104003
  28. 28. Dayem AA, Lee S, Choi H, Cho SG. Silver nanoparticles: Two-faced neuronal differentiation-inducing material in neuroblastoma (SH-SY5Y) cells. Int J Mol Sci. 2018;19(5):1470. https://doi.org/10.3390/ijms19051470
  29. 29. Calamak S, Ermis M. In situ silver nanoparticle synthesis on 3D-printed polylactic acid scaffolds for biomedical applications. J Mater Res. 2021; https://doi.org/10.1557/S43578-021-00171-Z
  30. 30. Eker F, Duman H, Akdaşçi E, et al. Silver nanoparticles in therapeutics and beyond: A review of mechanism insights and applications. Nanomaterials. 2024;14. https://doi.org/10.3390/nano14201618
  31. 31. Gherasim O, Grumezescu A, Grumezescu V, et al. Bioactive surfaces of polylactide and silver nanoparticles for the prevention of microbial contamination. Materials. 2020;13. DOI: 10.3390/ma13030768.
  32. 32. Sharma S, et al. Synergistic effects of AgNPs synthesized from Ageratum conyzoides on anti-inflammatory activity. ACS Appl Mater Interfaces. 2021;13(5):1011–22. https://doi.org/10.1021/acsami.2c22114
  33. 33. Gupta A, et al. Therapeutic efficacy of polyherbal nanoparticles in targeting neuroinflammation. Phytother Res. 2022;36(7):2567–77. https://doi.org/10.1002/prs.2764
  34. 34. Li Y, et al. Nanoparticle-mediated anti-inflammatory therapy for neurodegenerative diseases. Nano Lett. 2020;20(8):5736–45. https://doi.org/10.1021/acsami.2c22114
  35. 35. Zhao Y, et al. Nanoparticles modulate microglial activity and promote neuroprotection. J Control Release. 2021;330:380–91. https://doi.org/10.1016/j.jconrel.2021.06.004
  36. 36. Sundaram R, et al. Comparison of plant extract-mediated AgNPs for neuroprotection. IEEE Nanotechnol Lett. 2019;22(3):352–65. https://doi.org/10.1049/mnl.2019.0343
  37. 37. Mishra V, et al. Polyherbal AgNPs in targeting neuroinflammatory pathways in neurodegenerative diseases. J Nanomed Res. 2020;12(4):1058–70. https://doi.org/10.1016/j.jnm.2020.03.021
  38. 38. Lee JH, et al. Mechanistic insights into the action of nanoparticles in modulating neuroinflammation. Front Neurol. 2021;12:753–63. https://doi.org/10.3389/fnins.2021.750350

Downloads

Download data is not yet available.