Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Advancements in rice harvest machinery towards enhanced efficiency in modern agriculture

DOI
https://doi.org/10.14719/pst.8339
Submitted
17 March 2025
Published
26-07-2025

Abstract

Rice is a vital food crop globally, ensuring food and nutritional security for the population. Same way, rice is an important food crop in the India and also has many traditional values. The mechanization of rice cultivation has significantly advanced, covering various aspects of farming operations, including transplanting, weeding, spraying, harvesting and post-harvest processes. The majority of rice harvesting operations worldwide are mechanized, marking a major leap in agricultural technology. Numerous studies and research initiatives have contributed to this transformation, delivering innovative technologies and methods that have made rice harvest mechanization a successful strategy. However, despite these advancements, several constraints and challenges persist in rice harvest mechanization. This paper delves into the influence of the crop harvesting stage on grain losses, examining how factors like crop moisture content and timing affect efficiency. Additionally, it reviews different mechanical harvesting mechanisms, exploring their working principles, advantages and disadvantages. By consolidating insights from extensive research, the paper provides a comprehensive overview of rice mechanization, emphasizing its significance in improving productivity while reducing labour dependency and drudgery. Concluding with an analysis of existing constraints, the paper highlights the scope for further improvements in technology to make harvest mechanization more accessible and efficient for rice farmers.

References

  1. 1. Food and Agriculture Organization. Rice is life. Rome: FAO; 2004.
  2. 2. Jadhav RR, Kukadolli VD, Mathad VG, Dodamani SN. Design and performance analysis of hand-held solar powered cutter for paddy. Int J Emerg Technol Comput Sci Electron. 2015;14(2):874–7.
  3. 3. United Nations. World population prospects 2019: highlights. Department of Economic and Social Affairs, Population Division; 2019. Report No. ST/ESA/SER.A/423.
  4. 4. Malik A, Majid A, Ahmad S. Effect of harvesting time and drying method on paddy yield and milling quality in different varieties. Pak J Agric Res. 1981;2.
  5. 5. De Datta SK. Principles and practices of rice production. New York: Wiley; 1981.
  6. 6. Hiregoudar S, Udhaykumar R, Ramappa KT, Shreshta B, Meda V, Anantachar M, et al. Artificial neural network for assessment of grain losses for paddy combine harvester: a novel approach. In: Control, Computation and Information Systems. Berlin: Springer; 2011. p. 221–31. https://doi.org/10.1007/978-3-642-19263-0_27
  7. 7. Sutjana DP. Use of serrated sickle to increase farmer's productivity. J Hum Ergol. 2000;29(1–2):1–6.
  8. 8. Singh SP. Physiological workload of farm women while evaluating sickles for paddy harvesting. Agric Eng Int: CIGR J. 2012;14(1):82–8.
  9. 9. Kumar V, Kumari N. Development of farm women friendly sickle for reducing drudgery and saving energy. Int J Chem Stud. 2018;4:141–5.
  10. 10. Chavan P, Wagh R, Khairnar P. Design and analysis of crop reaper machine. Int J Future Gener Commun Netw. 2020;13(2):802–8.
  11. 11. Yadav RN, Yadav BG. Design and development of bullock drawn reaper. Indian J Agric Eng. 1991.
  12. 12. Devnani RS. Harvesting equipments developed in India. Bhopal: CIAE; 1980.
  13. 13. Singh LP, Vagadia VR, Jain KK, Memon AH. Evaluation and improvement in design of self-propelled vertical conveyer reaper. AMA Agric Mech Asia Afr Lat Am. 2008;39(2):34–8.
  14. 14. Hossain MD. Fabrication of self-propelled reaper by locally available materials [dissertation]. Mymensingh: Bangladesh Agricultural University.
  15. 15. Noby MM, Hasan MK, Ali MR, Saha CK, Alam MM, Hossain MM. Performance evaluation of modified BAU self-propelled reaper for paddy. J Bangladesh Agril Univ. 2018;16(2):171–7. https://doi.org/10.3329/jbau.v16i2.37956
  16. 16. Aung NN, Myo PP, Moe HZ. Field performance evaluation of a power reaper for rice harvesting. Int J Sci Eng Technol Res. 2014;12(3):2631–6.
  17. 17. Mishra RS. Field trial on reaper binder. J Agric Eng. 1983;17(2).
  18. 18. Patel A, Singh R, Shukla P, Moses SC. Performance evaluation of self-propelled reaper binder for harvesting of wheat crop. Int J Curr Microbiol App Sci. 2018;7(12):896–906. https://doi.org/10.20546/ijcmas.2018.712.112
  19. 19. Dhananchezhiyan P, Parveen S, Pandian NKS, Rangasamy K. Development and comparative study of cast iron rasp bar and nylon rasp bar threshing cylinders for paddy threshing. Sci J Agric Eng. 2013;4:45–54.
  20. 20. Dhananchezhiyan P, Parveen S, Rangasamy K. Development and performance evaluation of low cost portable paddy thresher for small farmers. Int J Eng Res Technol. 2013;2(7):571–85. https://doi.org/10.17577/IJERTV2IS70098
  21. 21. Dhananchezhiyan P, Parveen S, Rangasamy K, Shridar B, Surendrakumar A. Development of a nylon rasp bar threshing cylinder for portable paddy thresher and its performance evaluation. Madras Agric J. 2013;100(4–6):623–6.
  22. 22. Dhananchezhiyan P, Parveen S, Naik R. Study of mechanical properties of popular paddy varieties of Tamil Nadu relevant to development of mini paddy thresher. Curr Agric Res J. 2013;1(1):59–64. https://doi.org/10.12944/CARJ.1.1.08
  23. 23. Pawar CS, Shirsat NA, Pathak SV. Performance evaluation of combine harvester and combination of self-propelled vertical conveyor reaper with thresher for wheat harvesting. Agric Update. 2008;3(1&2):123–6.
  24. 24. Kanafojski CZ. Agricultural machines, theory and construction: Vol 2. Crop harvesting machines. USDA and National Science Foundation; 1976. p. 1–1044.
  25. 25. International Rice Research Institute. Harvesting operations. 2015. Available from: http://www.knowledgebank.irri.org/step-by-step production/postharvest/harvesting/harvesting-operations
  26. 26. Kumar D, Kalita P. Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods. 2017;6(1):8. https://doi.org/10.3390/foods6010008
  27. 27. Justice S, Keeling SJ, Basnet G, Krupnik TJ. Scale-appropriate farm machinery for rice and wheat harvesting: updates from South and South East Asia. Cereal Syst Initiat South Asia (CSISA). 2021.
  28. 28. Klenin NI, Popov IF, Sakun VA. Agricultural machines. New Delhi: Amerind Publishing Co Pvt Ltd; 1985. p. 1–633.
  29. 29. Celik A. Design and operating characteristics of a push type cutter bar mower. Can Biosyst Eng. 2006;48(2):23–7.
  30. 30. Kepner RA, Bainer R, Barger EL. Principles of farm machinery. Westport (CT): Avi Pub. Co.; 1978. p. 1–527.
  31. 31. Jalali A, Abdi R. The effect of ground speed, reel rotational speed and reel height in harvester losses. J Agric Sustain. 2014;5(2):221–31.
  32. 32. Tomchuk V. Loss management when harvesting grain, legume and oilseed crops. Nor J Dev Int Sci. 2020;(50-1):54–67.
  33. 33. Bawatharani R, Jayatissa DN, Dharmasena DA, Bandara MH. Impact of reel index on header losses of paddy and performance of combine harvesters. Trop Agric Res. 2015;25(1). https://doi.org/10.4038/tar.v25i1.8025
  34. 34. Chinsuwan W, Mongpraneet S, Panya N. Optimum harvest period for Hom Mali rice using combine harvester. KKU Res J. 1997;2(1):54–63.
  35. 35. Behrouzi-Lar M, Hasanpoor HR, Sadeghneghad A, Asadi A, Khosravani, Saati M. The final report of combine grain loss. Natl Res Plan. J Agric Eng Res. 1995;37:107–20.
  36. 36. Oduori MF, Mbuya TO, Sakai J, Inoue E. Kinematics of the tined combine harvester reel. Agric Eng Int: CIGR J. 2012;14(3):53–60.
  37. 37. Junsiri C, Chinsuwan W. Operating parameters affecting header losses of combine harvesters for Chainat 1 rice variety. Asia-Pac J Sci Technol. 2009;14(3):314–21. https://doi.org/10.5555/20113202956
  38. 38. Kathirvel K, Suthakar B, Manohar Jesudas D. Effect of crop, machine and operational parameters on peak cutting force for harvesting fodder maize. AMA Agric Mech Asia Afr Lat Am. 2011;42(4):28.
  39. 39. Koloor RT, Borgheie A. Measuring the static and dynamic cutting force of stems for Iranian paddy varieties. J Agric Sci Technol. 2006;8:193–8.
  40. 40. Pekitkan FG, Sessiz A, Esgici R. Effects of blades types on shear force and energy requirement of paddy stem. Int J Agric Environ Food Sci. 2020;4(3):376–83. https://doi.org/10.31015/jaefs.2020.3.18
  41. 41. Bhardwaj A, Mahal JS. Study of dust content in wheat straw harvested by wheat straw combines. Int J Agric Eng. 2014;7:149–15. https://doi.org/10.5555/20143236106
  42. 42. Virk G. Performance evaluation of paddy straw chopper with combine cutting head mechanism [M.Tech. thesis]. Ludhiana (India): Punjab Agricultural University; 2016.
  43. 43. Paulsen MR, Pinto FA, de Sena DG Jr, Zandonadi RS, Ruffato S, Costa AG, et al. Measurement of combine losses for corn and soybeans in Brazil. Appl Eng Agric. 2014;30(6):841–55. https://doi.org/10.13031/AIM.20131570965
  44. 44. Hofman V, Wiersma J, Allrich T. Grain harvest losses. University of Minnesota, North Dakota State; 1978. Available from: http://www.smallgrains.org/Techfile/Sept78.htm
  45. 45. Jung R. Measuring soybean harvesting losses. Factsheet. Ministry of Agriculture, Food and Rural Affairs; 1981.
  46. 46. Fouad HA, Tayel SA, El-Hadad Z, Abdel-Mawla H. Performance of two different types of combines in harvesting rice in Egypt. AMA Agric Mech Asia Afr Lat Am. 1990;21(3):17–22.
  47. 47. Badawi AT. A proposal on the assessment of rice post-harvest losses. In: The new development in rice agronomy and its effects on yield and quality in Mediterranean areas. 2003. p. 126.
  48. 48. Lesoing G. Reduce grain harvest losses. University of Missouri; 2001. Available from: http://extension.missouri.edu
  49. 49. Sessiz A, Pekitkan FG, Turgut MM. Hasat kayıpları, nedenleri, ölçme yöntemleri ve azaltma yolları. Tarımsal Mekanizasyon. 2006;23:6–8.
  50. 50. Baran MF, Ülger P, Kayışoğlu B. Kanola hasadında kullanılan tablanın hasat kayıpları üzerine etkisi. Tekirdağ Ziraat Fak Derg. 2012;9(3):35–44.
  51. 51. Coen T, Vanrenterghem A, Saeys W, De Baerdemaeker J. Autopilot for a combine harvester. Comput Electron Agric. 2008;63(1):57–64. https://doi.org/10.1016/j.compag.2008.03.007
  52. 52. Hunt D. Farm power and machinery management. 9th ed. Ames (IA): Iowa State University Press; 1995.
  53. 53. Kalsirislip R, Singh G. Performance evaluation of Thai-made rice combine harvester. AMA Agric Mech Asia Afr Lat Am. 1999;30(4):63–9.
  54. 54. Bora GC, Hansen GK. Low cost mechanical aid for rice harvesting. J Appl Sci. 2007;7(23):3815–8. https://doi.org/10.3923/jas.2007.3815.3818
  55. 55. Veerangouda M, Sushilendra S, Prakash KV, Anantachar M. Performance evaluation of tractor operated combine harvester. Karnataka J Agric Sci. 2010;23(2):282–5.
  56. 56. Ujala, Kumar A, Kumar S, Kumar R, Kumar S, Kumar R. Performance evaluation of paddy straw reaper in paddy variety Pusa–44. Forage Res. 2020;45(4):328–34.
  57. 57. Nurdin S, Lestari MW, Hidayat K, Prasnowo MA. Design of ergonomic paddy harvesting machine. Int J Phys Conf Ser. 2018;1114(1):012136. https://doi.org/10.1088/1742-6596/1114/1/012136
  58. 58. Rathinavel S, Bhaskar S, Mathew M, Jayan PR. Investigation on mechanized harvesting requirements of Pokkali paddy for optimizing harvester design. Ecol Environ Conserv. 2022;28(3):1571–5. https://doi.org/10.53550/EEC.2022.v28i03.058
  59. 59. Rathinavel S, Bhaskar S. Design analysis of suitable cutter header assembly for Pokkali paddy harvester [PhD dissertation]. Thrissur (India): Kerala Agricultural University; 2021.
  60. 60. Rathinavel S, Bhaskar S, Mathew M, Jayan PR, Kavitha R, Yallappa D. Design of small scale floating paddy harvester. Int Rice Congr, Manila, Philippines. 2023;618. https://doi.org/10.5281/zenodo.10399471
  61. 61. Sutisna SP, Subrata ID, Setiawan M, RP A, Mandang T. Development of the turn algorithm of an autonomous combine harvester at the corner of paddy fields. IOP Conf Ser Earth Environ Sci. 2022;1038(1):012058. https://doi.org/10.1088/1755-1315/1038/1/012058
  62. 62. Binbin X, Jizhan L, Meng H, Jian W, Zhujie X. Research progress on autonomous navigation technology of agricultural robot. In: 2021 IEEE 11th Annu Int Conf CYBER Technol Autom Control Intell Syst (CYBER). IEEE; 2021. p. 891–8. https://doi.org/10.1109/CYBER53010.2021.00015
  63. 63. Lee K, Choi H, Kim J. Development of path generation and algorithm for autonomous combine harvester using dual GPS antenna. Sensors. 2023;23(10):4944. https://doi.org/10.3390/s23104944
  64. 64. Sirikun C, Samseemoung G, Soni P, Langkapin J, Srinonchat J. A grain yield sensor for yield mapping with local rice combine harvester. Agriculture. 2021;11(9):897. https://doi.org/10.3390/agriculture11090897
  65. 65. Rathinavel S, Kavitha R, Surendrakumar A, Kannan B, Kalarani MK, Sivaskumar SD. Scope and challenges of variable rate fertilizer application technology for paddy cultivation in India. Int Rice Congr, Manila, Philippines. 2023;539. https://doi.org/10.5281/zenodo
  66. 66. Bomoi MI, Nawi NM, Abd Aziz S, Mohd Kassim MS. Sensing technologies for measuring grain loss during harvest in paddy field: A review. AgriEngineering. 2022;4(1):292–310. https://doi.org/10.3390/agriengineering4010020
  67. 67. Rathinavel S, Kavitha R, Gitanjali J, Saiprasanth R. Role of 5G technology in enhancing agricultural mechanization. IOP Conf Ser Earth Environ Sci. 2023;1258(1):012010. https://doi.org/10.1088/1755-1315/1258/1/012010
  68. 68. Rabbani MG, Pramanik MS, Chakrabartty J. Illuminating the path to sustainable rice harvesting: A solar-based paddy harvester. Energy Strateg Rev. 2024;53:101389. https://doi.org/10.1016/j.esr.2024.101389
  69. 69. Hossain MA, Hoque MA, Wohab MA, Miah MM, Hassan MS. Technical and economic performance of combined harvester in farmers’ field. Bangladesh J Agric Res. 2015;40(2):291–304. https://doi.org/10.3329/bjar.v40i2.24569
  70. 70. Tahir R. Paddy harvest technology and change in economic system of farmers in Indonesia. J Entrep Educ. 2021;24(1):1–0.
  71. 71. Meisner CA, Petter H, Badruddin M, Razzaque MA, Giri GS, Scott J. Mechanical revolution among small landholders of South Asia: The growing use of Chinese hand tractors. In: Proc Joint Int Conf Agric Eng Technol Exhib ‘97, Dhaka. 1997;3(1):781–7.
  72. 72. Govindaraj M, Masilamani P, Asokan D, Selvaraju P. Effect of different harvesting and threshing methods on seed quality of rice varieties. Int J Curr Microbiol Appl Sci. 2017;6(8):2375–83. https://doi.org/10.20546/ijcmas.2017.608.281
  73. 73. Pullaila A, Amrullah ER, Astuti Y, Ishida A. Factors affecting paddy farmers’ perception of utilizing agricultural machines in Indonesia. J Agric Ext Rural Dev. 2018;10(8):150–7.
  74. 74. Jawlekar SB, Shelar SD. Development and performance analysis of low cost combined harvester for Rabi crops. Int J Agric Eng. 2020;22(1).
  75. 75. Basavarajappa DN, Chinnappa B, Sannathimmappa HG. Farm machinery: the economics of paddy harvesting. Int J Agric Eng. 2013;6(1):240–3. https://doi.org/10.5555/20143236011
  76. 76. Konno S, Shindo H, Katahira M, Matsuga M. Effects of agricultural machine fuel consumption on paddy fields. J Agric Sci Technol. 2017;:170–8. https://doi.org/10.17265/2161-6264/2017.03.004
  77. 77. Alizadeh MR, Allameh A. Evaluating rice losses in various harvesting practices. Int Res J Appl Basic Sci. 2013;4(4):894–901.
  78. 78. Špokas L, Steponavičius D. Fuel consumption during cereal and rape harvesting and methods of its reduction. J Food Agric Environ. 2011;9(3–4):257–63.
  79. 79. Esgici R, Sessiz A, Bayhan Y. The relationship between the age of combine harvester and grain losses for paddy. Mech Agric Conserv Resour. 2016;62(1):18–21.
  80. 80. Prasanth S, Praveenkumar G, Sridhar V, Saranraj S, Saravanan DS. Paddy harvesting system using vacuum inhalation mechanism. Int J Innov Res Technol. 2000;6(11):454–9.
  81. 81. Marikannan K, Srinivasan G. An economic analysis on cost and returns of paddy in Jawadhu Hills of Tamil Nadu. Int J Zool Appl Biosci. 2022;7(4):3–38. https://doi.org/10.55126/ijzab.2022.v07.i04.001
  82. 82. Sagar M, Reddy S, Shravani G, Sridhar A, Vikram B, Reddy YB. Economical feasibility of combine harvester in paddy cultivation [unpublished thesis]. Telangana (India): Professor Jayashankar Telangana State Agricultural University.
  83. 83. Hasan MK, Ali MR, Saha CK, Alam MM, Haque ME. Combine harvester: impact on paddy production in Bangladesh. J Bangladesh Agric Univ. 2019;17(4):583–91. https://doi.org/10.3329/jbau.v17i4.44629

Downloads

Download data is not yet available.