Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Understanding the microbiome of ornamental plants: A comprehensive note

DOI
https://doi.org/10.14719/pst.8356
Submitted
18 March 2025
Published
26-11-2025

Abstract

Ornamental plants are linked with a number of microbes present in rhizosphere, phyllosphere and endophytic region. Different plants host distinct microbiome communities. Many of these microorganisms are beneficial but some of them are pathogenic also. Beneficial microorganisms are engaged in putrefaction of organic matter, nutrient mineralization, nitrogen fixation, phosphate solubilization and development of plant-growth hormones. They also help the plants in restricting the development of pathogenic organisms and to withstand against various biotic and abiotic stresses. This review presents an extensive literature search on microbes of ornamental plants. The knowledge of microbiome and its beneficial effect on ornamental plants will be helpful in development of microbial formulations for sustainable flower production which will further lessen the utilization of agrochemicals and maintain ecological balance. Studies on microbiome-based sustainable practices in ornamentals, though promising, are poorly understood.

References

  1. 1. Mendes R, Garbeva P, Raaijmakers JM. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev. 2013;37(5):634-63. https://doi.org/10.1111/1574-6976.12028
  2. 2. Berendsen RL, Vismans GyuK, Song Y, Jonge R, Burgman WP, Burmølle M, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 2018;12(6):1496-507. https://doi.org/10.1038/s41396-018-0093-1
  3. 3. Gu Y, Wei Z, Wang X, Friman V, Huang J, Wang X, et al. Pathogen invasion indirectly changes the composition of soil microbiome via shifts in root exudation profile. Biol Fert Soils. 2016;52(7):997-1005. https://doi.org/10.1007/s00374-016-1136-2
  4. 4. Raaijmakers JM, Weller DM. Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Appl Environ Microbiol. 2001;67(6):2545-54. https://doi.org/10.1128/AEM.67.6.2545-2554.2001
  5. 5. Suzuki M. Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J. 2006;48(1):85-97. https://doi.org/10.1111/j.1365-313X.2006.02853.x
  6. 6. Kumar A, Bhatti SK, Aggarwal A. Biodiversity of endophytic mycorrhiza in some ornamental flowering plants of Solan, Himachal Pradesh. Biol Forum. 2012;4(2):45-51.
  7. 7. Heijden MGVD, Martin FM, Selosse MA, Sanders IR. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 2015;205(4):1406-23. https://doi.org/10.1111/nph.13288
  8. 8. Fitzpatrick CR, Copeland J, Wang PW, Johnson MTJ. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci USA. 2018;115(6):1157-65. https://doi.org/10.1073/pnas.1717617115
  9. 9. Auge RM, Schekel KA, Wample RL. Greater leaf conductance of well-watered VA mycorrhizal rose plants is not related to phosphorus nutrition. New Phytol. 1986;103(1):107-16. https://doi.org/10.1111/j.1469-8137.1986.tb00600.x
  10. 10. Green CD, Stodola A, Auge RM. Transpiration of detached leaves from mycorrhizal and non-mycorrhizal cowpea and rose plants given varying abscisic acid, pH, calcium, and phosphorus. Mycorrhiza. 1998;8(2):93-9. https://doi.org/10.1007/s005720050218
  11. 11. Pinior A, Grunewaldt SG, Von AH, Strasser RJ. Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. Mycorrhiza. 2005;15(8):596-605. https://doi.org/10.1007/s00572-005-0001-1
  12. 12. Aboul-Nasr A. Effects of vesicular-arbuscular mycorrhiza on Tagetes erecta and Zinnia elegans. Mycorrhiza. 1996;6(1):61-4. https://doi.org/10.1007/s005720050107
  13. 13. Ganadevi G, Haripriya K. Studies on screening efficient VAM fungi for chrysanthemum. South Indian Hortic. 1999;47(1-6):325-6.
  14. 14. Haripriya K, Sriramachandrasekharan MV. Effect of VAM inoculation on growth and yield of chrysanthemum. J Ecobiol. 2002;14(1):39-42.
  15. 15. Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A. Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol. 2011;62(1):188-97. https://doi.org/10.1007/s00248-011-9883-y
  16. 16. Finkel OM, Burch Adrien Y, Lindow SE, Post AF, Belkin S. Geographical location determines the population structure in phyllosphere microbial communities of a salt-excreting desert tree. Appl Environ Microbiol. 2011;77(21):7647-55. https://doi.org/10.1128/AEM.05565-11
  17. 17. Heydenreich B, Bellinghausen I, König B, Becker WM, Grabbe S, Petersen A, et al. Gram-positive bacteria on grass pollen exhibit adjuvant activity inducing inflammatory T cell responses. Clin Exp Allergy. 2012;42(1):76-84. https://doi.org/10.1111/j.1365-2222.2011.03888.x
  18. 18. Pusey PL, Stockwell VO, Mazzola M. Epiphytic bacteria and yeasts on apple blossoms and their potential as antagonists of Erwinia amylovora. Phytopathology. 2009;99(5):571-81. https://doi.org/10.1094/PHYTO-99-5-0571
  19. 19. Groenewald M, Robert V, Smith MT. Five novel Wickerhamomyces- and Metschnikowia-related yeast species, Wickerhamomyces chaumierensis sp. nov., Candida pseudoflosculorum sp. nov., Candida danieliae sp. nov., Candida robnettiae sp. nov. and Candida eppingiae sp. nov., isolated from plants. Int J Syst Evol Microbiol. 2011;61(8):2015-22. https://doi.org/10.1099/ijs.0.026062-0
  20. 20. Junker RR, Loewel C, Gross R, Dötterl S, Keller A, Blüthgen N. Composition of epiphytic bacterial communities differs on petals and leaves. Plant Biol. 2011;13(6):918-24. https://doi.org/10.1111/j.1438-8677.2011.00454.x
  21. 21. Pozo MI, Lachance MA, Herrera CM. Nectar yeasts of two southern Spanish plants: the roles of immigration and physiological traits in community assembly. FEMS Microbiol Ecol. 2012;80(2):281-93. https://doi.org/10.1111/j.1574-6941.2011.01286.x
  22. 22. Bouffaud ML, Poirier MA, Muller D, Moenne-Loccoz Y. Root microbiome relates to plant host evolution in maize and other Poaceae. Environ Microbiol. 2014;16(9):2804-14. https://doi.org/10.1111/1462-2920.12442
  23. 23. Jangid K, Williams MA, Franzluebbers AJ, Schmidt TM, Coleman DC, Whitman WB. Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biol Biochem. 2011;43(11):2184-93. https://doi.org/10.1016/j.soilbio.2011.06.022
  24. 24. Besmer YL, Koide RT. Effect of mycorrhizal colonization and phosphorus on ethylene production by snapdragon (Antirrhinum majus L.) flowers. Mycorrhiza. 1999;9(3):161-6. https://doi.org/10.1007/s005720050301
  25. 25. Sohn BK, Kim KY, Chung SJ, Kim WS, Park SM, Kang JG, et al. Effect of the different timing of AMF inoculation on plant growth and flower quality of chrysanthemum. Sci Hortic. 2003;98(2):173-83. https://doi.org/10.1016/S0304-4238(02)00210-8
  26. 26. Bednarek P. Chemical warfare or modulators of defence responses – the function of secondary metabolites in plant immunity. Curr Opin Plant Biol. 2012;15(4):407-14. https://doi.org/10.1016/j.pbi.2012.03.002
  27. 27. Sugiyama Y, Ueda Y, Zushi T, Takase H, Yazaki K. Changes in the bacterial community of soybean rhizospheres during growth in the field. PLoS One. 2014;9(7):e100709. https://doi.org/10.1371/journal.pone.0100709
  28. 28. Harmsen G, Jager G. Determination of the quantity of carbon and nitrogen in the rhizosphere of young plants. Nature. 1962;195(4846):1119-20. https://doi.org/10.1038/1951119a0
  29. 29. Xie MM, Wu QS. Arbuscular mycorrhizal fungi regulate flowering of Hyacinth orientalis L. Anna marie. Emirates J Food Agric. 2018;30(2):144-9. https://doi.org/10.9755/ejfa.2018.v30.i2.1614
  30. 30. Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15(9):579-90. https://doi.org/10.1038/nrmicro.2017.87
  31. 31. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. 2015;79(3):293-320. https://doi.org/10.1128/MMBR.00050-14
  32. 32. Navarrete AA, Cannavan FS, Taketani RG, Tsai SM. A molecular survey of the diversity of microbial communities in different Amazonian agricultural model systems. Diversity. 2010;2(5):787-809. https://doi.org/10.3390/d2050787
  33. 33. Hartmann A, Schmid M, van Tuinen D, Berg G. Plant-driven selection of microbes. Plant Soil. 2009;321(1-2):235-75. https://doi.org/10.1007/s11104-008-9814-y
  34. 34. Tripathi BM, Moroenyane I, Sherman C, Lee YK, Adams JM, Steinberger Y. Trends in taxonomic and functional composition of soil microbiome along a precipitation gradient in Israel. Microb Ecol. 2017;74(1):168-76. https://doi.org/10.1007/s00248-017-0931-0
  35. 35. Kumar P, Thakur S, Dhingra GK, Singh A, Pal M, Harshvardhan K, et al. Inoculation of siderophore producing rhizobacteria and their consortium for growth enhancement of wheat plant. Biocatal Agric Biotechnol. 2018;15:264-9. https://doi.org/10.1016/j.bcab.2018.06.019
  36. 36. De Vries FT, Griffiths RI, Knight CG, Nicolitch O, Williams A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science. 2020;368(6488):270-4. https://doi.org/10.1126/science.aaz5192
  37. 37. de Bello F, Lavorel S, Díaz S, Harrington R, Cornelissen JHC, Bardgett RD, et al. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv. 2010;19(4):2873-93. https://doi.org/10.1007/s10531-010-9850-9
  38. 38. Hardoim PR, van Overbeek LS, Van EJD. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 2008;16(9):463-71. https://doi.org/10.1016/j.tim.2008.07.008
  39. 39. Spaepen S, Dobbelaere S, Croonenborghs A, Vanderleyden J. Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil. 2008;312(1-2):15-23. https://doi.org/10.1007/s11104-008-9560-1
  40. 40. Oblisami G. The inter-relationships between ornamental plants and soil microorganisms. I. The rhizosphere microflora of marigold. South Indian Hortic. 2008;21(2):59-62.
  41. 41. Oblisami G, Onkarayya H. The inter-relationships between ornamental plants and soil microorganisms. 2. The rhizosphere microflora of balsam and English daisy and enzyme activities. South Indian Hortic. 1973;21(3):83-8.
  42. 42. Bhattacharya P, Mishra UC. Biofertilizers for flowers and ornamental plants. In: Singh T, editor. A book on biofertilizer to extension worker. UP: National Biofertilizer Development Centre; 1995. p. 102.
  43. 43. Marulanda A, Azcón R, Chaumont F, Lozano JMR, Aroca R. Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta. 2010;232(2):533-43. https://doi.org/10.1007/s00425-010-1196-8
  44. 44. Rillig MC, Mummey DL. Mycorrhizas and soil structure. New Phytol. 2006;171(1):41-53. https://doi.org/10.1111/j.1469-8137.2006.01750.x
  45. 45. Flores CA, Estrada LAA, Olalde PV. Yield and quality enhancement of marigold flowers by inoculation with Bacillus subtilis and Glomus fasciculatum. J Sustain Agric Environ. 2007;31(1):21-31. https://doi.org/10.1300/J064v31n01_04
  46. 46. Prasad K, Aggarwal A, Yadav K, Tanwar A. Impact of different levels of superphosphate using arbuscular mycorrhizal fungi and Pseudomonas fluorescens on Chrysanthemum indicum L. J Soil Sci Plant Nutr. 2012;12(3):451-62. https://doi.org/10.4067/S0718-95162012005000007
  47. 47. Saini I, Aggarwal A, Kaushik P. Inoculation with mycorrhizal fungi and other microbes to improve the morpho-physiological and floral traits of Gazania rigens (L.) Gaertn. Agriculture. 2019;9(3):51. https://doi.org/10.3390/agriculture9030051
  48. 48. Gore ME, Altin N. Growth promoting of some ornamental plants by root treatment with specific fluorescent pseudomonads. J Biol Sci. 2006;6(3):610-15. https://doi.org/10.3923/jbs.2006.610.615
  49. 49. Syamal MM, Dixit SK, Kumar S. Effect of biofertilizers on growth and yield in marigold. J Ornamental Hortic. 2006;9(4):304-5.
  50. 50. Singh AK. Effect of FYM, Azotobacter and nitrogen on leaf nutrient composition, growth, flowering and yield in rose. Indian J Hortic. 2006;63(1):62-5.
  51. 51. Dubey RK, Misra RL. Study of chemical and biofertilizers on gladiolus. Progressive Hortic. 2006;38(2):125-8.
  52. 52. Yadav BS, Gupta AK, Singh S. Studies on the effect of nitrogen, plant spacing, and bio-fertilizers on growth parameters in tuberose cv. Double. Haryana J Hortic Sci. 2005;34(1-2):78-80.
  53. 53. Eid AR, Awad MN, Hamouda HA. Evaluate effectiveness of bio and mineral fertilization on the growth parameters and marketable cut flowers of Matthiola incana L. Am Eurasian J Agric Environ Sci. 2009;5(4):509-18.
  54. 54. Preethi TL, Pappiah CM, Anbu S. Studies on the effect of Azospirillum sp., nitrogen and ascorbic acid on the growth and flowering of Edward rose (Rosa bourboniana Desp.). South Indian Hortic. 1999;47(1-6):106-10.
  55. 55. Bhalla R, Sandeep D, Dhiman SR, Ritu J. Effect of biofertilizers and biostimulants on growth and flowering in standard carnation (Dianthus caryophyllus Linn.). J Ornam Hortic. 2006;9(4):282-4.
  56. 56. Hoda EEM, Mona S. Effect of bio and chemical fertilizers on growth and flowering of Petunia hybrida plants. Am J Plant Physiol. 2014;9(2):68-77. https://doi.org/10.3923/ajpp.2014.68.77
  57. 57. Mosse B. Advances in study of vesicular arbuscular mycorrhiza. Ann Rev Phytopathol. 1981;19:171-98.
  58. 58. Perner H, Schwarz D, Bruns C, Mäder P, George E. Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of Pelargonium plants. Mycorrhiza. 2007;17(5):469-74. https://doi.org/10.1007/s00572-007-0116-7
  59. 59. Meir D, Pivonia S, Levita R, Dori I, Ganot L, Meir S, et al. Application of mycorrhizae to ornamental horticultural crops: lisianthus (Eustoma gradiflorum) as a test case. Spanish J Agric Res. 2010;8(S1):5-10. https://doi.org/10.5424/sjar/201008S1-1221
  60. 60. Scagel CF. Inoculation with vesicular-arbuscular mycorrhizal fungi and rhizobacteria alters nutrient allocation and flowering of harlequin flower. HortTechnology. 2004;14(1):39-48. https://doi.org/10.21273/HORTTECH.14.1.0039
  61. 61. Saini I, Yadav K, Aggarwal A. Effect of bioinoculants on morphological and biochemical parameters of Zinnia elegans Jacq. J Appl Hortic. 2017;19(3):167-72. https://doi.org/10.37855/jah.2017.v19i02.31
  62. 62. Janowska B, Andrzejak R. Effect of mycorrhizal inoculation on development and flowering of Tagetes patula L. ‘YellowBoy’ and Salvia splendens Buc'hoz ex Etl. ‘Saluti Red’. Acta Agrobot. 2017;70(1):1703. https://doi.org/10.5586/aa.1703
  63. 63. Gaur A, Adholeya A. Diverse response of five ornamental plant species to mixed indigenous and single isolate arbuscular-mycorrhizal inocula in marginal soil amended with organic matter. J Plant Nutr. 2005;28(4):707-23. https://doi.org/10.1081/PLN-200052647
  64. 64. Asrar AA, Abdel-Fattah GM, Elhindi KM. Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica. 2012;50(2):305-16. https://doi.org/10.1007/s11099-012-0024-8
  65. 65. Lazzara S, Militello M, Carrubba A, Napoli E, Saia S. Arbuscular mycorrhizal fungi altered the hypericin, pseudohypericin, and hyperforin content in flowers of Hypericum perforatum grown under contrasting P availability in a highly organic substrate. Mycorrhiza. 2017;27(4):1-10. https://doi.org/10.1007/s00572-016-0756-6
  66. 66. Nowak J. Effects of arbuscular mycorrhizal fungi and organic fertilization on growth, flowering, nutrient uptake, photosynthesis and transpiration of geranium (Pelargonium hortorum L.H. Bailey ‘Tango Orange’). Symbiosis. 2004;37(1-4):259-66.
  67. 67. Attia M, Eid RA. Effect of inoculation timing with arbuscular mycorrhizal fungi on growth and flowering of micropropagated Chrysanthemum morifolium. Arab Univ J Agric Sci. 2005;13(3):677-88. https://doi.org/10.21608/ajs.2005.15269
  68. 68. Vaingankar JD, Rodrigues BF. Effect of arbuscular mycorrhizal inoculation on growth and flowering in Crossandra infundibuliformis (L.) Nees. J Plant Nutr. 2015;38(9):1478-88. https://doi.org/10.1080/01904167.2014.957398
  69. 69. Tarafdar JC, Gharu A. Mobilization of organic and poorly soluble phosphates by Chaetomium globosum. Appl Soil Ecol. 2006;32(3):273-83. https://doi.org/10.1016/j.apsoil.2005.08.005
  70. 70. Chandra S, Srivastava N, Narayan R, Sharma N. Efficacy of microbial inoculants on reducing the phosphatic fertilizer input in chrysanthemum. Indian J Hortic. 2009;66(1):83-7.
  71. 71. Lin CS, Lin SY, Guang WC. Microbial inoculation effect on the growth and phosphorus concentration of Eustoma grandiflorum. J Agric Res China. 2001;50(4):66-73.
  72. 72. Scagel CF. Inoculation with arbuscular mycorrhizal fungi alters nutrient allocation and flowering of Freesia × hybrida. J Environ Hortic. 2003;21(4):196-205.
  73. 73. Garmendia I, Mangas VJ. Application of arbuscular mycorrhizal fungi on the production of cut flower roses under commercial-like conditions. Spanish J Agric Res. 2012;10(1):166-74. https://doi.org/10.5424/sjar/2012101-156-11
  74. 74. Dubsky M, Sramek F. Inoculation of cyclamen (Cyclamen persicum) and poinsettia (Euphorbia pulcherrima) with arbuscular mycorrhizal fungi and Trichoderma harzianum. Rostlinna Vyroba. 2002;48(2):63-8. https://doi.org/10.17221/4361-PSE
  75. 75. Adholeya A. Diverse response of five ornamental plant species to mixed indigenous and single isolate arbuscular mycorrhizal inocula in marginal soil amended with organic matter. J Plant Nutr. 2005;28(4):707-23. https://doi.org/10.1081/PLN-200052647
  76. 76. Jin Z, Li J, Li Y. Interactive effects of arbuscular mycorrhizal fungi and copper stress on flowering phenology and reproduction of Elsholtzia splendens. PLoS One. 2015;10(12):e0145793. https://doi.org/10.1371/journal.pone.0145793
  77. 77. Banla EM, Banito A, Sogbedji JM. Effects of arbuscular mycorrhizal fungi on the production of tomato in Togo. Int J Biol Chem Sci. 2015;9(3):1270-6. https://doi.org/10.4314/ijbcs.v9i3.12
  78. 78. Soroa MR, Cortes SL, Hernandez A. Study of the effect of application of biofertilizers on some variables of growth and yield in Gerbera jamesonii cv. Bolus. Cultiv Trop. 2003;24(2):15-7.
  79. 79. Schroth MN, Hildebrand DC. Influence of plant exudates on root-infecting fungi. Ann Rev Phytopathol. 1964;2:101-32. https://doi.org/10.1146/annurev.py.02.090164.000533
  80. 80. Heath MC. A generalized concept of host-parasite specificity. J Phytopathol. 1981;71(12):1121-3. https://doi.org/10.1094/Phyto-71-1121
  81. 81. Mazumdar N. Epidemiological factors in relation to development of Alternaria leaf blight of marigold and fungicidal control. Plant Disease Res. 2000;15(1):28-33.
  82. 82. Agrios GN. Plant pathology. 5th ed. New York: Academic Press; 2005.
  83. 83. Saroj A, Kumar A, Saeed ST, Samad A, Alam M. First report of Tagetes erecta damping off caused by Ceratobasidium sp. from India. Plant Dis. 2017;97(9):1251. https://doi.org/10.1094/PDIS-02-13-0145-PDN
  84. 84. Trolinger JC, Strider DL. Botrytis diseases. In: Strider DL, editor. Diseases of floral crops. Vol. 1. New York: Praeger Special Studies; 1985. p. 17-101.
  85. 85. Khatun S, Chakraborti J, Santra S, Banerjee S, Chatterjee S, Dutta S, et al. Black spot disease of rose (Rosa centifolia) – a new record from India. Int J Plant Sci. 2008;3(1):294.
  86. 86. Shukla A, Thakur R. First report of septoria leaf spot on marigold (Tagetes erecta L.) from Himachal Pradesh, India. Int J Curr Microbiol Appl Sci. 2018;7(1):1744-8. https://doi.org/10.20546/ijcmas.2018.701.211
  87. 87. Minuto A, Gullino ML, Garibaldi A. Gerbera jamesonii, Osteospermum sp. and Argyranthemum frutescens: new hosts of Fusarium oxysporum f. sp. chrysanthemi. J Phytopathol. 2007;155(6):373-6. https://doi.org/10.1111/j.1439-0434.2007.01248.x
  88. 88. Troisi M, Gullino ML, Garibaldi A. Gerbera jamesonii, a new host of Fusarium oxysporum f. sp. tracheiphilum. J Phytopathol. 2010;158(1):8-14. https://doi.org/10.1111/j.1439-0434.2009.01551.x
  89. 89. Padghan PR, Gade RM. Biomanagement of root rot complex of gerbera (Gerbera jamesonii Bolus). Ann Plant Prot Sci. 2006;14(1):134-8.
  90. 90. Ortu G, Bertetti D, Gullino ML, Garibaldi A. New formae speciales of Fusarium oxysporum on ornamental plants. Acta Hortic. 2014;1044:89-92. https://doi.org/10.17660/ActaHortic.2014.1044.9
  91. 91. Uroz S, Courty PE, Oger P. Plant symbionts are engineers of the plant-associated microbiome. Trends Plant Sci. 2019;24(10):905-16. https://doi.org/10.1016/j.tplants.2019.06.008
  92. 92. Berg M, Koskella B. Nutrient- and dose-dependent microbiome-mediated protection against a plant pathogen. Curr Biol. 2018;28(15):2487-92.e3. https://doi.org/10.1016/j.cub.2018.05.085
  93. 93. Hunter P. Plant microbiomes and sustainable agriculture. EMBO Rep. 2016;17(9):1-4. https://doi.org/10.15252/embr.201643476
  94. 94. Ellis JG. Can plant microbiome studies lead to effective biocontrol of plant diseases? Mol Plant-Microbe Interact. 2017;30(3):190-3. https://doi.org/10.1094/MPMI-12-16-0252-CR
  95. 95. Trivedi PM, Delgado-Baquerizo Trivedi C, Hamonts K, Anderson IC, Singh BK. Keystone microbial taxa regulate the invasion of a fungal pathogen in agroecosystems. Soil Biol Biochem. 2017;111:10-14. https://doi.org/10.1016/j.soilbio.2017.03.013
  96. 96. Singh P, Vijay K. Biological control of Fusarium wilt of chrysanthemum with Trichoderma and botanicals. Int J Agric Technol. 2011;7(6):1603-13.
  97. 97. Maya MA, Matsubara Y. Tolerance to Fusarium wilt and anthracnose diseases and changes of antioxidative activity in mycorrhizal cyclamen. Crop Prot. 2013;47:41-8. https://doi.org/10.1016/j.cropro.2013.01.007
  98. 98. Hassan N, Elsharkawy MM, Shimizu M, Hyakumachi M. Control of root rot and wilt diseases of roselle under field conditions. Mycobiology. 2014;42(4):376-84. https://doi.org/10.5941/MYCO.2014.42.4.376
  99. 99. David BV, Chandrasehar G, Selvam PN. Pseudomonas fluorescens: a plant-growth-promoting rhizobacterium (PGPR) with potential role in biocontrol of pests of crops. In: Sharma M, Kumar R, Singh P, editors. Crop improvement through microbial biotechnology. Amsterdam: Elsevier; 2018. p. 221-43. https://doi.org/10.1016/B978-0-444-63987-5.00010-4
  100. 100. Zhang Z, Kong X, Jin D, Yu H, Zhu X, Su X, et al. Euonymus japonicus phyllosphere microbiome is significantly changed by powdery mildew. Arch Microbiol. 2019;201(8):1099-109. https://doi.org/10.1007/s00203-019-01683-3
  101. 101. Kumar V, Chandel S. Management of rose powdery mildew (Podosphaera pannosa) through ecofriendly approaches. Indian Phytopathol. 2018;71(3):393-7. https://doi.org/10.1007/s42360-018-0050-y
  102. 102. Janice FE, Haselhan C, Punja ZK. Evaluation of biological control agents for control of botrytis blight of geranium and powdery mildew of rose. Canadian J Plant Pathol. 2011;33(4):499-505. https://doi.org/10.1080/07060661.2011.630758
  103. 103. Tyagi A, Raj H. Integration of soil solarization with bio-control agents for the management of stem rot of chrysanthemum. J Pharmacogn Phytochem. 2021;10(1):2468-71. https://doi.org/10.22271/phyto.2021.v10.i1ai.13734
  104. 104. Chandel S, Sharma S. Botanicals, biofumigants and antagonists application in managing stem rot disease caused by Rhizoctonia solani Kuhn in carnation. J Biopestic. 2014;7(1):3-10. https://doi.org/10.57182/jbiopestic.7.1.3-10
  105. 105. Vavre KB, Kakade DS, Sawne SS, Khaire PB. In vitro efficacy of bio-control agents against Fusarium oxysporum f. sp. gladioli. J Pharmacogn Phytochem. 2021;10(1):590-3.
  106. 106. Atakan A, Ozkaya HO. Induced resistance to Fusarium wilt in carnation with mixture of mycorrhizal fungi. Fresen Environ Bull. 2021;30(4A):4217-27.
  107. 107. Chandel S. Organic amendment, biocontrol agents and soil solarization practice in management of fusarium wilt of carnation caused by Fusarium oxysporum Schledit. f. sp. dianthi (Prill. and Del.) Snyd. Hans. Indian J Plant Prot. 2015;8(1):130-3. https://doi.org/10.15740/HAS/IJPP/8.1/130-133
  108. 108. Mahalakshmi P, Ahiladevi P. Ecofriendly management of fusarium wilt of carnation (Dianthus caryophyllus L.) by application of organic amendments. Adv Appl Sci Res. 2020;12(1):7-11. https://doi.org/10.5958/2349-2104.2020.00002.9
  109. 109. Rajendran L, Raja P, Vellaichamy J, Pushparaj V, Selvaraj NK. Pseudomonas fluorescens and Trichoderma viride enriched bioconsortium for the management of Fusarium wilt in carnation and gerbera under protected cultivation. Indian Phytopathol. 2014;67(1):77-81.
  110. 110. Salma Z, Sindhu SS, Ahlawat VP. Suppression of Fusarium wilt disease in gladiolus by using rhizobacterial strains. J Crop Weed. 2014;10(2):466-71.
  111. 111. Kumar S, Tomar KS, Shakywar RC, Mahesh P. Integrated management of fusarium wilt of gladiolus (Gladiolus hybridus Hort.) in Arunachal Pradesh conditions. J Ornam Hortic. 2013;16(1):52-6.
  112. 112. Shanmugam V, Kanoujia N, Singh M, Singh S, Prasad R. Biocontrol of vascular wilt and corm rot of gladiolus caused by Fusarium oxysporum f. sp. gladioli using plant growth promoting rhizobacterial mixture. Crop Prot. 2011;30(7):807-13. https://doi.org/10.1016/j.cropro.2011.02.033
  113. 113. Beale R, Pitt D. Biological and integrated control of Fusarium basal rot of Narcissus using Minimedusa polyspora and other micro-organisms. Plant Pathol. 1990;39(3):477-88. https://doi.org/10.1111/j.1365-3059.1990.tb02524.x
  114. 114. Tatagiba JS, Maffia LA, Barreto RW, Alfenas AC, Sutton JC. Biological control of Botrytis cinerea in residues and flowers of Rose (Rosa hybrida). Phytoparasitica. 1998;26(1):8-19. https://doi.org/10.1007/BF02981261
  115. 115. Kohl J, Postma J, Nicot P, Ruocco M, Blum B. Stepwise screening of microorganisms for commercial use in biological control of plant pathogenic fungi and bacteria. Biol Control. 2011;57(1):1-12. https://doi.org/10.1016/j.biocontrol.2010.12.004
  116. 116. Romina D, Massa N, Amalero EG, Gostino GD, Ampò SS, Berta G, et al. Preliminary results on the evaluation of the effects of elicitors of plant resistance on chrysanthemum yellows phytoplasma infection. Bull Insectol. 2012;60(2):317-18.
  117. 117. Rout MK, Mishra B. Studies on collar rot disease of marigold and its management. J Mycopathol Res. 2008;46(2):283-4.
  118. 118. Widmer TL, Brousseau SSJ, Kosta K, Ghosh S, Schweigkofler W, Sharma SK. Remediation of Phytophthora ramorum-infested soil with Trichoderma asperellum isolate under ornamental nursery conditions. Biol Control. 2018;118:67-73. https://doi.org/10.1016/j.biocontrol.2017.12.007
  119. 119. Elhady A, Adss S, Hallmann J, Heuer H. Rhizosphere microbiomes modulated by pre-crops assisted plants in defense against plant-parasitic nematodes. Front Microbiol. 2018;9:1133. https://doi.org/10.3389/fmicb.2018.01133
  120. 120. Ritpitakphong U, Falquet L, Vimoltust A, Berger A, Métraux JP, Haridon FL. The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New Phytol. 2016;210(3):1033-43. https://doi.org/10.1111/nph.13808
  121. 121. Naylor D, de Graaf S, Purdom E, Derr DC. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J. 2017;11(12):2691-704. https://doi.org/10.1038/ismej.2017.118
  122. 122. Niu B, Paulson JN, Zheng X, Kolter R. Simplified and representative bacterial community of maize roots. Proc Natl Acad Sci USA. 2017;114(12):E2450-9. https://doi.org/10.1073/pnas.1616148114
  123. 123. Hassan S, Mathesius U. The role of flavonoids in root–rhizosphere signalling: opportunities and challenges for improving plant–microbe interactions. J Exp Bot. 2012;63(9):3429-44. https://doi.org/10.1093/jxb/err430
  124. 124. Liu H, Khan MY, Carvalhais LC, Baquerizo MD, Yan L, Crawford M, et al. Soil amendments with ethylene precursor alleviate negative impacts of salinity on soil microbial properties and productivity. Sci Rep. 2019;9(1):6892. https://doi.org/10.1038/s41598-019-43305-4
  125. 125. Xu L, Derr DC. Causes and consequences of a conserved bacterial root microbiome response to drought stress. Curr Opin Microbiol. 2019;49:1-6. https://doi.org/10.1016/j.mib.2019.07.003
  126. 126. Duc NH, Csintalan Z, Posta K. Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant Physiol Biochem. 2018;132:297-307. https://doi.org/10.1016/j.plaphy.2018.09.011
  127. 127. Maya MA, Ito M, Matsubara Y. Tolerance to heat stress and anthracnose in mycorrhizal Cyclamen. Acta Hortic. 2014;(1025):371-8. https://doi.org/10.17660/ActaHortic.2014.1025.21
  128. 128. Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res. 2014;169(1):30-9. https://doi.org/10.1016/j.micres.2013.09.009
  129. 129. Mosqueda COM, Glick BR, Santoyo G. ACC deaminase in plant growth-promoting bacteria (PGPB): an efficient mechanism to counter salt stress in crops. Microbiol Res. 2020;235:126439. https://doi.org/10.1016/j.micres.2020.126439
  130. 130. Arny D, Lindow S, Upper C. Frost sensitivity of Zea mays increased by application of Pseudomonas syringae. Nature. 1976;262(5566):282-4. https://doi.org/10.1038/262282a0
  131. 131. Failor K, Schmale DG, Vinatzer BA, Monteil CL. Ice nucleation active bacteria in precipitation are genetically diverse and nucleate ice by employing different mechanisms. ISME J. 2017;11(12):2740-53. https://doi.org/10.1038/ismej.2017.124
  132. 132. Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 1993;125(1):27-58. https://doi.org/10.1111/j.1469-8137.1993.tb03863.x
  133. 133. Rouphael Y, Cardarelli M, Schwarz D, Franken P, Colla G. Effects of drought on nutrient uptake and assimilation in vegetable crops. In: Aroca R, editor. Plant responses to drought stress. Berlin: Springer; 2012. p. 171-95. https://doi.org/10.1007/978-3-642-32653-0_7
  134. 134. Sangiorgio D, Cellini A, Donati I, Pastore C, Onofrietti C, Spinelli F. Facing climate change: application of microbial biostimulants to mitigate stress in horticultural crops. Agronomy. 2020;10(6):794. https://doi.org/10.3390/agronomy10060794
  135. 135. Santoyo G, Gamalero E, Glick BR. Mycorrhizal-bacterial amelioration of plant abiotic and biotic stress. Front Sustain Food Syst. 2021;5:139. https://doi.org/10.3389/fsufs.2021.672881
  136. 136. Wang Y, Wang M, Li Y, Wu A, Huang J. Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS One. 2018;13(4):e0196408. https://doi.org/10.1371/journal.pone.0196408
  137. 137. Gong M, Tang M, Chen H, Zhang Q, Feng X. Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress. New For. 2013;44(3):399-408. https://doi.org/10.1007/s11056-012-9349-1
  138. 138. Fagbola O, Osonubi O, Mulongoy K, Odunfa S. Effects of drought stress and arbuscular mycorrhiza on the growth of Gliricidia sepium (Jacq). Walp, Leucaena leucocephala (Lam). De wit. in simulated eroded soil conditions. Mycorrhiza. 2001;11(5):215-23. https://doi.org/10.1007/s005720100114
  139. 139. Scheilenbaum L, Schuepp H, Wiemken A, Boller T. Effect of drought, transgenic expression of a fructan synthesizing enzyme and of mycorrhizal symbiosis on growth and soluble carbohydrate pools in tobacco plants. New Phytol. 1999;142(1):67-77. https://doi.org/10.1046/j.1469-8137.1999.00376.x
  140. 140. Asrar AWA, Elhindi KM. Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. Saudi J Biol Sci. 2011;18(1):93-8. https://doi.org/10.1016/j.sjbs.2010.06.007
  141. 141. Al-Karaki GN, Clark RB. Growth, mineral acquisition, and water use by mycorrhizal wheat grown under water stress. J Plant Nutr. 1998;21(2):263-76. https://doi.org/10.1080/01904169809365401
  142. 142. Jha CK, Saraf M. Plant growth promoting rhizobacteria (PGPR): a review. J Agric Res Dev. 2015;5(1):108-19.
  143. 143. Nordstedt NP, Chapin LJ, Taylor CG, Jones ML. Identification of Pseudomonas spp. that increases ornamental crop quality during abiotic stress. Front Plant Sci. 2020;10:1754. https://doi.org/10.3389/fpls.2019.01754
  144. 144. Lin Y, Jones ML. Evaluating the growth-promoting effects of microbial biostimulants on greenhouse floriculture crops. HortScience. 2021;57(1):97-109. https://doi.org/10.21273/HORTSCI16149-21
  145. 145. Zhou C, Zhu L, Xie Y, Li F, Xiao X, Ma Z, et al. Bacillus licheniformis SA03 confers increased saline-alkaline tolerance in Chrysanthemum plants by induction of abscisic acid accumulation. Front Plant Sci. 2017;8:1143. https://doi.org/10.3389/fpls.2017.01143
  146. 146. Prisa D. Role of microorganisms in horticulture to improve plant quality. Karbala Int J Modern Sci. 2023;9(1):34-42. https://doi.org/10.33640/2405-609X.3284
  147. 147. Kumbar I, Patil CP, Kulkarni BS, Shiragur M, Shirol AM. Efficacy of Entrophospora sp. (VA mycorrhiza) on salt tolerance and flower yield and quality of Chrysanthemum var. Marigold (Dendranthema grandiflora Tzvelev.). Int J Curr Microbiol Appl Sci. 2017;6(10):4769-77. https://doi.org/10.20546/ijcmas.2017.610.443
  148. 148. Yuan Y, Brune C, van Kleunen M, Li J, Jin Z. Salinity-induced changes in the rhizosphere microbiome improve salt tolerance of Hibiscus hamabo. Plant Soil. 2019;443(1):525-37. https://doi.org/10.1007/s11104-019-04258-9
  149. 149. Samad A, Antonielli L, Sessitsch A, Compant S, Trognitz F. Comparative genome analysis of the vineyard weed endophyte Pseudomonas viridiflava CDRTc14 showing selective herbicidal activity. Sci Rep. 2017;7(1):17336. https://doi.org/10.1038/s41598-017-16495-y
  150. 150. Chowdhury SP, Hartmann A, Gao XW, Rainer B. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Front Microbiol. 2015;6:780. https://doi.org/10.3389/fmicb.2015.00780
  151. 151. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil. 2009;321(1-2):341-61. https://doi.org/10.1007/s11104-008-9568-6
  152. 152. Ardanov P, Lyastchenko S, Karppinen K, Häggman H, Kozyrovska N, Pirttilä AM. Effects of Methylobacterium sp. on emergence, yield, and disease prevalence in three cultivars of potato (Solanum tuberosum L.) were associated with the shift in endophytic microbial community. Plant Soil. 2016;405(1):299-310. https://doi.org/10.1007/s11104-015-2500-y
  153. 153. Rodríguez-Caballero G, Caravaca F, Fernández-González AJ, Alguacil MM, Fernández-López M, Roldán A. Arbuscular mycorrhizal fungi inoculation mediated changes in rhizosphere bacterial community structure while promoting revegetation in a semiarid ecosystem. Sci Total Environ. 2017;584-5:838-48. https://doi.org/10.1016/j.scitotenv.2017.01.128
  154. 154. Schmidt R, Köberl M, Mostafa A, Ramadan EM, Monschein M, Jensen KB, et al. Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants. Front Microbiol. 2014;5:1-11. https://doi.org/10.3389/fmicb.2014.00064
  155. 155. Moghadam AR, Shoor M. Effect of different organic and inorganic fertilizers on growth and flowering of African violet (Saintpaulia ionantha Wendl.). Int J Agric Crop Sci. 2013;5(17):1930-6.
  156. 156. Khan N, Bano A, Jameel M, Zahid I. Effect of plant growth promoting rhizobacteria (PGPR) on growth, physiology and yield of wheat under drought. J Basic Appl Sci. 2009;5(4):112-17.
  157. 157. Yasin M, Ahmed N. Response of tuberose (Polianthes tuberosa Linn.) to combined application of bio-organo-mineral fertilizers. J Plant Nutr. 2016;39(12):1748-59.
  158. 158. Sant S, Singh SK, Khan M. Effect of different phosphorus levels and PSB on growth, flowering and bulb production of tuberose (Polianthes tuberosa L.) cv. Double. J Ornam Hortic. 2010;13(1):76-8.
  159. 159. Negi A, Raj S. Effect of inorganic fertilizers and biofertilizers on growth, flowering and yield of Gaillardia pulchella Foug. var. ‘Local Red’. Int J Pharm Sci Rev Res. 2013;23(2):35-9.

Downloads

Download data is not yet available.