Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

New-age frontiers in enhancing the mobility of cell-based biosensors using drone technology

DOI
https://doi.org/10.14719/pst.8361
Submitted
18 March 2025
Published
14-10-2025

Abstract

The application of cell-based biosensor technology has emerged as a cutting-edge tool in the domains of food safety, environmental monitoring and pharmaceutical research. These biosensors operate by detecting changes in cellular proliferation, gene expression and metabolic activity in response to environmental stimuli. They also play a promising role in the detection and recognition of infectious diseases in crops and livestock, in situ analysis of pollutants in crops and soils, real-time measurements of crucial food processing indicators, monitoring animal fertility and screening therapeutic drugs in veterinary research. Unmanned Aerial Vehicles (UAVs) offer significant potential to enhance the mobility and deployment efficiency of cell-based biosensors, enabling real-time, remote and large-scale environmental diagnostics. Various biosensor models, such as chemical, physical and optical, utilizing modified chemicals, nanomaterials, nutraceuticals and biocompatible molecules are increasingly being explored for integration into UAV platforms for applications, such as biosensing, bio-imprinting and in-field testing. This article summarizes the existing applications of bio sensors and explores the potential of bio sensors using drones, highlighting research directions aimed at advancing societal welfare.

References

  1. 1. Siva Balan KC. Biosensors for sustainable food – new opportunities and technical challenges. Compr Anal Chem 2016;74:363 75. https://doi.org/10.1016/bs.coac.2016.04.017
  2. 2. Yao S, Ren P, Song R, Liu Y, Huang Q, Dong J, et al. Nanomaterial enabled flexible and stretchable sensing systems: processing, integration, and applications. Adv Mater 2020;32(15):e1902343. https://doi.org/10.1002/adma.201902343
  3. 3. Pan M, Gu Y, Yun Y, Li M, Jin X, Wang S. Nanomaterials for electrochemical immunosensing. Sensors (Basel) 2017;17(5):1041. https://doi.org/10.3390/s17051041
  4. 4. Lu Y, Macias D, Dean ZS, Kreger NR, Wong PK. A UAV mounted whole cell biosensor system for environmental monitoring applications. IEEE Trans Nanobiosci 2015;14(8):811 17. https://doi.org/10.1109/TNB.2015.2478481
  5. 5. Panagiotou P, Yakinthos K. Aerodynamic efficiency and performance enhancement of fixed wing UAVs. Aerosp Sci Technol 2020;99:55 75. https://doi.org/10.1016/j.ast.2019.105575
  6. 6. Siva Balan KC, Nithila S. Farmers’ capacity strengthening and climate advisory services for combating climate change in India. J Pharmacogn Phytochem 2018;7(4S):179 82. https://doi.org/10.3390/plants8020034
  7. 7. Chen CH, Lu Y, Sin MLY, Mach KE, Zhang DD, Gau V, et al. Antimicrobial susceptibility testing using high surface to volume ratio microchannels. Anal Chem 2010;82(3):1012 19. https://doi.org/10.1021/ac9023997
  8. 8. Scognamiglio V, Arduini F, Palleschi G, Rea G. Biosensing technology for sustainable food safety. TrAC Trends Anal Chem 2014;62:1 10. https://doi.org/10.1016/j.trac.2014.06.008
  9. 9. Schutz S, Weissbecker B, Koch UT, Hummel HE. Detection of volatiles released by diseased potato tubers using a biosensor on the basis of intact insect antennae. Biosens Bioelectron 2000;14(2):221 28. https://doi.org/10.1016/S0956-5663(99)00130-1
  10. 10. Adami A, Mortari A, Morganti E, Lorenzelli L. Microfluidic sample preparation methods for the analysis of milk contaminants. J Sensors 2016;2016:2385267. https://doi.org/10.1155/2016/2385267
  11. 11. Arduini F, Cinti S, Scognamiglio V, Moscone D. Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Microchim Acta 2016;183:2063 83. https://doi.org/10.1007/s00604-016-1771-0
  12. 12. Martins SAM, Martins VC, Cardoso FA, Germano J, Rodrigues M, Duarte C, et al. Biosensors for on farm diagnosis of mastitis. Front Bioeng Biotechnol 2019;7:186. https://doi.org/10.3389/fbioe.2019.00186
  13. 13. Vidic J, Manzano M, Chang CM, Jaffrezic-Renault N. Advanced biosensors for detection of pathogens related to livestock and poultry. Vet Res 2017;48(1):11. https://doi.org/10.1186/s13567-017-0418-5
  14. 14. Thiruvengadam M, Venkidasamy B, Selvaraj D, Samynathan R, Subramanian U. Sensitive screen-printed electrodes with the colorimetric zone for simultaneous determination of mastitis and ketosis in bovine milk samples. J Photochem Photobiol B 2020;203:111746. https://doi.org/10.1016/j.jphotobiol.2019.111746
  15. 15. Chen T, Cheng G, Ahmed S, Wang Y, Wang X, Hao H, et al. New methodologies in screening of antibiotic residues in animal-derived foods: Biosensors. Talanta 2017;175:435 42. https://doi.org/10.1016/j.talanta.2017.07.044
  16. 16. Hemben A, Ashley J, Tothill IE. An immunosensor for parasite lactate dehydrogenase detection as a malaria biomarker - Comparison with commercial test kit. Talanta 2018;187:321 29. https://doi.org/10.1016/j.talanta.2018.04.086
  17. 17. Wang Z, Zhang J, Liu L, Wu X, Kuang H, Xu C, et al. A colorimetric paper-based sensor for toltrazuril and its metabolites in feed, chicken, and egg samples. Food Chem 2019;276:707 13. https://doi.org/10.1016/j.foodchem.2018.10.047
  18. 18. Guerra E, Bolea Y, Gamiz J, Grau A. Design and implementation of a virtual sensor network for smart waste water monitoring. Sensors (Basel) 2020;20(2):358. https://doi.org/10.3390/s20020358
  19. 19. Dung TT, Oh Y, Choi SJ, Kim ID, Oh MK, Kim M. Applications and advances in bioelectronic noses for odour sensing. Sensors (Basel) 2018;18(1):103. https://doi.org/10.3390/s18010103
  20. 20. Shriver-Lake LC, Erickson JS, Sapsford KE, Ngundi MM, Shaffer KM, Kulagina NV, et al. System for environmental monitoring applications. IEEE Trans Nanobiosci 2015;14:811 17. https://doi.org/10.1109/TNB.2015.2478481
  21. 21. Maddikunta PKR, Hakak S, Alazab M, Bhattacharya S. Unmanned aerial vehicles in smart agriculture: Applications, requirements and challenges. arXiv Prepr 2020;arXiv:2007.12874. https://arxiv.org/abs/2007.12874
  22. 22. Raul RG, Irineo TP, Gerardo GGR, Miguel CML. Biosensors used for quantification of nitrates in plants. J Sensors 2016;2016:113. https://doi.org/10.1155/2016/1630695
  23. 23. Larrieu A, Champion A, Legrand J, Lavenus J, Mast D, Brunoud G, et al. A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants. Nat Commun 2015;6:1 8. https://doi.org/10.1038/ncomms7043
  24. 24. Tian F, Greplova M, Frebort I, Dale N, Napier R. A highly selective biosensor with nanomolar sensitivity based on cytokinin dehydrogenase. PLoS One 2014;9:e000000. https://doi.org/10.1371/journal.pone.0090877
  25. 25. Bachmann T, Leca B, Vilatte F, Marty JL, Fournier D, Schmid RD. Improved multianalyte detection of organophosphates and carbamates with disposable multielectrode biosensors using recombinant mutants of Drosophila acetylcholinesterase and artificial neural networks. Biosens Bioelectron 2000;15:193 201. https://doi.org/10.1016/S0956-5663(00)00090-6
  26. 26. Lino C, Barrias S, Chaves R, Adega F, Martins-Lopes P, Fernandes JR. Biosensors as diagnostic tools in clinical applications. Biochim Biophys Acta Rev Cancer 2022;1877(3):188726. https://doi.org/10.1016/j.bbcan.2022.188726

Downloads

Download data is not yet available.