Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Integrative strategies for enhancing drought tolerance in rice (Oryza sativa L.): From breeding to biotechnology

DOI
https://doi.org/10.14719/pst.8378
Submitted
19 March 2025
Published
17-10-2025

Abstract

Drought stress is a critical abiotic factor limiting rice (Oryza sativa L.) productivity, posing a significant challenge to global food security. Given the increasing frequency and severity of drought events due to climate change, developing drought-tolerant rice varieties has become a major research priority. Conventional breeding strategies and marker assisted selection (MAS) have been widely used to improve drought resilience in rice. These approaches focus on incorporating key traits like deep rooting, osmotic adjustment and efficient water use. Advances in molecular techniques, such as genomic selection, quantitative trait loci (QTL) mapping and CRISPR/Cas-based gene editing, allow precise genetic modifications to improve drought tolerance. Omics technologies such as genomics, proteomics and metabolomics have facilitated the identification of drought-responsive genes, regulatory pathways and adaptation mechanisms. Agronomic practices such as alternate wetting and drying (AWD), in combination with nanotechnology-based interventions, contribute to sustainable drought stress mitigation and water management. Additionally, multi-omics approaches and big-data analytics accelerate trait discovery and deployment, enabling the development of climate-resilient rice varieties. Addressing the complexity of drought tolerance requires an integrative approach that combines advanced breeding, genetics, plant physiology and sustainable agronomic practices to ensure food security and mitigate the impact of drought on rice production.

References

  1. 1. Vavilov NI. Studies on the origin of cultivated plants. Leningrad: Institut de Botanique Appliquée et d'Amélioration des Plantes; 1926.
  2. 2. Mohidem NA, Hashim N, Shamsudin R, Che Man H. Rice for food security: revisiting its production, diversity, rice milling process and nutrient content. Agriculture. 2022;12(6):741. https://doi.org/10.3390/agriculture12060741
  3. 3. Sathoria P, Roy B. Sustainable food production through integrated rice-fish farming in India: a brief review. Renew Agric Food Syst. 2022;37(5):527-35. https://doi.org/10.1017/S1742170522000126
  4. 4. Wasaya A, Yasir TA, Sarwar N, Mubeen K, Rajendran K, Hadifa A, et al. Climate change and global rice security. In: Modern techniques of rice crop production. Singapore: Springer; 2022. p. 13-26. https://doi.org/10.1007/978-981-16-4955-4_2
  5. 5. Zhao M, Lin Y, Chen H. Improving nutritional quality of rice for human health. Theor Appl Genet. 2020;133:1397-413. https://doi.org/10.1007/s00122-019-03530-x
  6. 6. Ahmad B, Raina A, Khan S. Impact of biotic and abiotic stresses on plants, and their responses. In: Disease resistance in crop plants: molecular, genetic and genomic perspectives. Cham.: Springer; 2019. p. 1-9. https://doi.org/10.1007/978-3-030-20728-1_1
  7. 7. Tfwala CM, Mengistu AG, Seyama E, Mosia MS, Van Rensburg LD, Mvubu B, et al. Nationwide temporal variability of droughts in the Kingdom of Eswatini: 1981-2018. Heliyon. 2020;6(12):e05707. https://doi.org/10.1016/j.heliyon.2020.e05707
  8. 8. Latha GM, Mohapatra T, Geetanjali AS, Rao KR. Engineering rice for abiotic stress tolerance: a review. Curr Trends Biotechnol Pharm. 2017;11(4):396-413.
  9. 9. Gaballah MM, Metwally AM, Skalicky M, Hassan MM, Brestic M, El Sabagh A, et al. Genetic diversity of selected rice genotypes under water stress conditions. Plants. 2020;10(1):27. https://doi.org/10.3390/plants10010027
  10. 10. Dar MH, Waza SA, Shukla S, Zaidi NW, Nayak S, Hossain M, et al. Drought tolerant rice for ensuring food security in Eastern India. Sustainability. 2020;12(6):2214. https://doi.org/10.3390/su12062214
  11. 11. De Leon TB, Linscombe S, Subudhi PK. Molecular dissection of seedling salinity tolerance in rice (Oryza sativa L.) using a high-density GBS-based SNP linkage map. Rice. 2016;9:1-22. https://doi.org/10.1186/s12284-016-0125-2
  12. 12. Oladosu Y, Rafii MY, Samuel C, Fatai A, Magaji U, Kareem I, et al. Drought resistance in rice from conventional to molecular breeding: a review. Int J Mol Sci. 2019;20(14):3519. https://doi.org/10.3390/ijms20143519
  13. 13. Fahad S, Hussain S, Saud S, Hassan S, Chauhan BS, Khan F, et al. Responses of rapid viscoanalyzer profile and other rice grain qualities to exogenously applied plant growth regulators under high day and high night temperatures. PLoS One. 2016;11(7):e0159590. https://doi.org/10.1371/journal.pone.0159590
  14. 14. Lum MS, Hanafi MM, Rafii YM, Akmar AS. Effect of drought stress on growth, proline and antioxidant enzyme activities of upland rice. J Anim Plant Sci. 2014;24(5):1487-93.
  15. 15. Yang X, Wang B, Chen L, Li P, Cao C. The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Sci Rep. 2019;9(1):3742. https://doi.org/10.1038/s41598-019-40161-0
  16. 16. Oladosu Y, Rafii MY, Abdullah N, Magaji U, Miah G, Hussin G, et al. Genotype × environment interaction and stability analyses of yield and yield components of established and mutant rice genotypes tested in multiple locations in Malaysia. Acta Agric Scand B Soil Plant Sci. 2017;67(7):590-606. https://doi.org/10.1080/09064710.2017.1321138
  17. 17. Sahebi M, Hanafi MM, Rafii MY, Mahmud TM, Azizi P, Osman M, et al. Improvement of drought tolerance in rice (Oryza sativa L.): genetics, genomic tools, and the WRKY gene family. Biomed Res Int. 2018;2018:3158474. https://doi.org/10.1155/2018/3158474
  18. 18. Hu H, Xiong L. Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol. 2014;65:715-41. https://doi.org/10.1146/annurev-arplant-050213-040000
  19. 19. Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, et al. Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci. 2018;9:393. https://doi.org/10.3389/fpls.2018.00393
  20. 20. Dash PK, Rai R, Rai V, Pasupalak S. Drought induced signaling in rice: delineating canonical and non-canonical pathways. Front Chem. 2018;6:264. https://doi.org/10.3389/fchem.2018.00264
  21. 21. Mishra SS, Panda D. Leaf traits and antioxidant defense for drought tolerance during early growth stage in some popular traditional rice landraces from Koraput, India. Rice Sci. 2017;24(4):207-17. https://doi.org/10.1016/j.rsci.2017.04.001
  22. 22. Vibhuti CS, Bargali K, Bargali SS. Seed germination and seedling growth parameters of rice (Oryza sativa L.) varieties as affected by salt and water stress. Indian J Agric Sci. 2015;85(1):102-8. https://doi.org/10.56093/ijas.v85i1.46046
  23. 23. Kim Y, Chung YS, Lee E, Tripathi P, Heo S, Kim KH. Root response to drought stress in rice (Oryza sativa L.). Int J Mol Sci. 2020;21(4):1513. https://doi.org/10.3390/ijms21041513
  24. 24. Comas LH, Becker SR, Cruz VM, Byrne PF, Dierig DA. Root traits contributing to plant productivity under drought. Front Plant Sci. 2013;4:442. https://doi.org/10.3389/fpls.2013.00442
  25. 25. Niones JM, Suralta RR, Inukai Y, Yamauchi A. Field evaluation on functional roles of root plastic responses on dry matter production and grain yield of rice under cycles of transient soil moisture stresses using chromosome segment substitution lines. Plant Soil. 2012;359:107-20. https://doi.org/10.1007/s11104-012-1178-7
  26. 26. Maurel C, Simonneau T, Sutka M. The significance of roots as hydraulic rheostats. J Exp Bot. 2010;61(12):3191-8. https://doi.org/10.1093/jxb/erq150
  27. 27. Pandit E, Panda RK, Sahoo A, Pani DR, Pradhan SK. Genetic relationship and structure analysis of root growth angle for improvement of drought avoidance in early and mid-early maturing rice genotypes. Rice Sci. 2020;27(2):124-32. https://doi.org/10.1016/j.rsci.2020.01.003
  28. 28. Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet. 2013;45(9):1097-102. https://doi.org/10.1038/ng.2725
  29. 29. Gupta A, Rico-Medina A, Caño-Delgado AI. The physiology of plant responses to drought. Science. 2020;368(6488):266-9. https://doi.org/10.1126/science.aaz7614
  30. 30. Mishra R, Zhao K. Genome editing technologies and their applications in crop improvement. Plant Biotechnol Rep. 2018;12:57-68. https://doi.org/10.1007/s11816-018-0472-0
  31. 31. Zhu R, Wu F, Zhou S, Hu T, Huang J, Gao Y. Cumulative effects of drought–flood abrupt alternation on the photosynthetic characteristics of rice. Environ Exp Bot. 2020;169:103901. https://doi.org/10.1016/j.envexpbot.2019.103901
  32. 32. Upadhyaya H, Panda SK. Drought stress responses and its management in rice. In: Advances in rice research for abiotic stress tolerance. Woodhead Publ.; 2019. p. 177-200. https://doi.org/10.1016/B978-0-12-814332-2.00009-5
  33. 33. Rollins JA, Habte E, Templer SE, Colby T, Schmidt J, von Korff M. Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). J Exp Bot. 2013;64(11):3201-12. https://doi.org/10.1093/jxb/ert158
  34. 34. Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W. Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res. 2011;6(9):2026-32. https://doi.org/10.5897/AJAR10.027
  35. 35. Farooq M, Kobayashi N, Wahid A, Ito O, Basra SM. [RETRACTED] Strategies for producing more rice with less water. Adv Agron. 2009;101:351-88. https://doi.org/10.1016/S0065-2113(08)00806-7
  36. 36. Sarwar JM, Nozulaidi BN, Khairi BC, Mohd KY. Effects of water stress on rice production: bioavailability of potassium in soil. J Stress Physiol Biochem. 2013;9(2):97-107.
  37. 37. Ashraf MH, Harris PJ. Photosynthesis under stressful environments: an overview. Photosynthetica. 2013;51:163-90. https://doi.org/10.1007/s11099-013-0021-6
  38. 38. Laxa M, Liebthal M, Telman W, Chibani K, Dietz KJ. The role of the plant antioxidant system in drought tolerance. Antioxidants. 2019;8(4):94. https://doi.org/10.3390/antiox8040094
  39. 39. Anjum SA, Ashraf U, Tanveer M, Khan I, Hussain S, Shahzad B, et al. Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front Plant Sci. 2017;8:69. https://doi.org/10.3389/fpls.2017.00069
  40. 40. Osakabe Y, Osakabe K, Shinozaki K, Tran LS. Response of plants to water stress. Front Plant Sci. 2014;5:86. https://doi.org/10.3389/fpls.2014.00086
  41. 41. Patmi YS, Pitoyo A. Effect of drought stress on morphological, anatomical, and physiological characteristics of Cempo Ireng cultivar mutant rice (Oryza sativa L.) strain 51 irradiated by gamma-ray. J Phys Conf Ser. 2020;1436(1):012015. https://doi.org/10.1088/1742-6596/1436/1/012015
  42. 42. Kumar A, Basu S, Ramegowda V, Pereira A. Mechanisms of drought tolerance in rice. Burleigh Dodds Science Publ.; 2016.
  43. 43. Poli Y, Basava RK, Panigrahy M, Vinukonda VP, Dokula NR, Voleti SR, et al. Characterization of a Nagina22 rice mutant for heat tolerance and mapping of yield traits. Rice. 2013;6:36. https://doi.org/10.1186/1939-8433-6-36
  44. 44. Basu S, Jongerden J, Ruivenkamp G. Development of the drought tolerant variety Sahbhagi Dhan: exploring the concepts commons and community building. Int J Commons. 2017;11(1):144-70. https://doi.org/10.18352/ijc.673
  45. 45. Rasheed A, Hassan MU, Aamer M, Batool M, Fang S, Wu Z, et al. A critical review on the improvement of drought stress tolerance in rice (Oryza sativa L.). Not Bot Horti Agrobo. 2020;48(4):1756-88. https://doi.org/10.15835/nbha48412128
  46. 46. Dormatey R, Sun C, Ali K, Coulter JA, Bi Z, Bai J. Gene pyramiding for sustainable crop improvement against biotic and abiotic stresses. Agronomy. 2020;10(9):1255. https://doi.org/10.3390/agronomy10091255
  47. 47. Gosal SS, Wani SH, Kang MS. Biotechnology and drought tolerance. J Crop Improv. 2009;23(1):19-54. https://doi.org/10.1080/15427520802418251
  48. 48. Gouda G, Gupta MK, Donde R, Mohapatra T, Vadde R, Behera L. Marker-assisted selection for grain number and yield-related traits of rice (Oryza sativa L.). Physiol Mol Biol Plants. 2020;26:885-98. https://doi.org/10.1007/s12298-020-00773-7
  49. 49. Barik SR, Pandit E, Pradhan SK, Mohanty SP, Mohapatra T. Genetic mapping of morpho-physiological traits involved during reproductive stage drought tolerance in rice. PLoS One. 2019;14(12):e0214979. https://doi.org/10.1371/journal.pone.0214979
  50. 50. Miah G, Rafii MY, Ismail MR, Sahebi M, Hashemi FS, Yusuff O, et al. Blast disease intimidation towards rice cultivation: a review of pathogen and strategies to control. J Anim Plant Sci. 2017;27(4):1058-69.
  51. 51. Chukwu SC, Rafii MY, Ramlee SI, Ismail SI, Oladosu Y, Okporie E, et al. Marker-assisted selection and gene pyramiding for resistance to bacterial leaf blight disease of rice (Oryza sativa L.). Biotechnol Biotechnol Equip. 2019;33(1):440–55. https://doi.org/10.1080/13102818.2019.1584054
  52. 52. Singh R, Singh Y, Xalaxo S, Verulkar S, Yadav N, Singh S, et al. From QTL to variety—harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Sci. 2016;242:278-87. https://doi.org/10.1016/j.plantsci.2015.08.008
  53. 53. Mishra KK, Vikram P, Yadaw RB, Swamy BM, Dixit S, Cruz MT, et al. qDTY12.1: a locus with a consistent effect on grain yield under drought in rice. BMC Genet. 2013;14:12. https://doi.org/10.1186/1471-2156-14-12
  54. 54. Dixit S, Mallikarjuna Swamy BP, Vikram P, Bernier J, Sta Cruz MT, Amante M, et al. Increased drought tolerance and wider adaptability of qDTY12.1 conferred by its interaction with qDTY2.3 and qDTY3.2. Mol Breed. 2012;30:1767-79. https://doi.org/10.1007/s11032-012-9760-5
  55. 55. Sandhu N, Dixit S, Swamy BM, Vikram P, Venkateshwarlu C, Catolos M, et al. Positive interactions of major-effect QTLs with genetic background that enhances rice yield under drought. Sci Rep. 2018;8(1):1626. https://doi.org/10.1038/s41598-018-20116-7
  56. 56. Catolos M, Sandhu N, Dixit S, Shamsudin NA, Naredo ME, McNally KL, et al. Genetic loci governing grain yield and root development under variable rice cultivation conditions. Front Plant Sci. 2017;8:1763. https://doi.org/10.3389/fpls.2017.01763
  57. 57. Jun R, Xixun H, Kejian W, Chun W. Development and application of CRISPR/Cas system in rice. Rice Sci. 2019;26(2):69-76. https://doi.org/10.1016/j.rsci.2019.01.001
  58. 58. Hua K, Tao X, Zhu JK. Expanding the base editing scope in rice by using Cas9 variants. Plant Biotechnol J. 2019;17(2):499-504. https://doi.org/10.1111/pbi.12993
  59. 59. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533(7603):420-4. https://doi.org/10.1038/nature17946
  60. 60. Gao W, Long L, Tian X, Xu F, Liu J, Singh PK, et al. Genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sci. 2017;8:1364. https://doi.org/10.3389/fpls.2017.01364
  61. 61. Chung PJ, Jung H, Choi YD, Kim JK. Genome-wide analyses of direct target genes of four rice NAC-domain transcription factors involved in drought tolerance. BMC Genomics. 2018;19:40. https://doi.org/10.1186/s12864-018-4484-5
  62. 62. Mickelbart MV, Hasegawa PM, Bailey-Serres J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet. 2015;16(4):237-51. https://doi.org/10.1038/nrg3901
  63. 63. Khan MI, Palakolanu SR, Chopra P, Rajurkar AB, Gupta R, Iqbal N, et al. Improving drought tolerance in rice: ensuring food security through multi-dimensional approaches. Physiol Plant. 2021;172(2):645-68. https://doi.org/10.1111/ppl.13223
  64. 64. Hamzelou S, Pascovici D, Kamath KS, Amirkhani A, McKay M, Mirzaei M, et al. Proteomic responses to drought vary widely among eight diverse genotypes of rice (Oryza sativa). Int J Mol Sci. 2020;21(1):363. https://doi.org/10.3390/ijms21010363
  65. 65. Shu L, Lou Q, Ma C, Ding W, Zhou J, Wu J, et al. Genetic, proteomic and metabolic analysis of the regulation of energy storage in rice seedlings in response to drought. Proteomics. 2011;11(21):4122-38. https://doi.org/10.1002/pmic.201000485
  66. 66. Tian X, Wang Z, Li X, Lv T, Liu H, Wang L, et al. Characterization and functional analysis of pyrabactin resistance-like abscisic acid receptor family in rice. Rice. 2015;8:30. https://doi.org/10.1186/s12284-015-0061-6
  67. 67. Wang X, Cai X, Xu C, Wang Q, Dai S. Drought-responsive mechanisms in plant leaves revealed by proteomics. Int J Mol Sci. 2016;17(10):1706. https://doi.org/10.3390/ijms17101706
  68. 68. Muthurajan R, Shobbar ZS, Jagadish SV, Bruskiewich R, Ismail A, Leung H, et al. Physiological and proteomic responses of rice peduncles to drought stress. Mol Biotechnol. 2011;48:173-82. https://doi.org/10.1007/s12033-010-9358-2
  69. 69. Du J, Shen T, Xiong Q, Zhu C, Peng X, He X, et al. Combined proteomics, metabolomics and physiological analyses of rice growth and grain yield with heavy nitrogen application before and after drought. BMC Plant Biol. 2020;20:527. https://doi.org/10.1186/s12870-020-02483-4
  70. 70. Arora N, Dubey D, Sharma M, Patel A, Guleria A, Pruthi PA, et al. NMR-based metabolomic approach to elucidate the differential cellular responses during mitigation of arsenic (III, V) in a green microalga. ACS Omega. 2018;3(9):11847-56. https://doi.org/10.1021/acsomega.8b01692
  71. 71. Ghatak A, Chaturvedi P, Weckwerth W. Metabolomics in plant stress physiology. In: Roychoudhury A, Tripathi DK, editors. Plant genetics and molecular biology. Cham.: Springer; 2018. p. 187-236. https://doi.org/10.1007/10_2017_55
  72. 72. Pires MV, Júnior AA, Medeiros DB, Daloso DM, Pham PA, Barros KA, et al. The influence of alternative pathways of respiration that utilize branched-chain amino acids following water shortage in Arabidopsis. Plant Cell Environ. 2016;39(7):1304-19. https://doi.org/10.1111/pce.12682
  73. 73. Khakimov B, Møller Jespersen B, Balling Engelsen S. Comprehensive and comparative metabolomic profiling of wheat, barley, oat and rye using gas chromatography–mass spectrometry and advanced chemometrics. Foods. 2014;3(4):569-85. https://doi.org/10.3390/foods3040569
  74. 74. Li A, Jia S, Yobi A, Ge Z, Sato SJ, Zhang C, et al. Editing of an alpha-kafirin gene family increases digestibility and protein quality in sorghum. Plant Physiol. 2018;177(4):1425-38. https://doi.org/10.1104/pp.18.00200
  75. 75. Xiong Q, Cao C, Shen T, Zhong L, He H, Chen X. Comprehensive metabolomic and proteomic analysis in biochemical metabolic pathways of rice spikes under drought and submergence stress. Biochim Biophys Acta Proteins Proteom. 2019;1867(3):237-47. https://doi.org/10.1016/j.bbapap.2019.01.001
  76. 76. Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, et al. Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci. 2016;7:1029. https://doi.org/10.3389/fpls.2016.01029
  77. 77. Cui M, Zhang W, Zhang Q, Xu Z, Zhu Z, Duan F, et al. Induced overexpression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiol Biochem. 2011;49(12):1384-91. https://doi.org/10.1016/j.plaphy.2011.09.012
  78. 78. Du H, Huang F, Wu N, Li X, Hu H, Xiong L. Integrative regulation of drought escape through ABA-dependent and -independent pathways in rice. Mol Plant. 2018;11(4):584-97. https://doi.org/10.1016/j.molp.2018.01.004
  79. 79. Dimkpa CO, Bindraban PS, Fugice J, Agyin-Birikorang S, Singh U, Hellums D. Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agron Sustain Dev. 2017;37:5. https://doi.org/10.1007/s13593-016-0412-8
  80. 80. Upadhyaya H, Shome S, Tewari S, Bhattacharya MK, Panda SK. Zinc nanoparticles induced comparative growth responses in rice (Oryza sativa L.) cultivars. Front Res Phys Sci. 2016;1:71-7.
  81. 81. Swamy BM, Shamsudin NA, Rahman SN, Mauleon R, Ratnam W, Sta Cruz MT, Kumar A. Association mapping of yield and yield-related traits under reproductive stage drought stress in rice (Oryza sativa L.). Rice. 2017;10:22. https://doi.org/10.1186/s12284-017-0161-6
  82. 82. Zhang J, Li Y, Zhang H, Dong P, Wei C. Effects of different water conditions on rice growth at the seedling stage. Rev Caatinga. 2019;32(2):440-8. https://doi.org/10.1590/1983-21252019v32n217rc
  83. 83. Moonmoon S, Islam MT. Effect of drought stress at different growth stages on yield and yield components of six rice (Oryza sativa L.) genotypes. Fundam Appl Agric. 2017;2(3):285-9. https://doi.org/10.5455/faa.277118
  84. 84. Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, et al. Crop production under drought and heat stress: plant responses and management options. Front Plant Sci. 2017;8:1147. https://doi.org/10.3389/fpls.2017.01147
  85. 85. Wei H, Chen C, Ma X, Zhang Y, Han J, Mei H, Yu S. Comparative analysis of expression profiles of panicle development among tolerant and sensitive rice in response to drought stress. Front Plant Sci. 2017;8:437. https://doi.org/10.3389/fpls.2017.00437
  86. 86. Luo Y, Lao L, Ai B, Zhang M, Xie J, Zhang F. Development of a drought stress-resistant rice restorer line through Oryza sativa–rufipogon hybridization. J Genet. 2019;98:44. https://doi.org/10.1007/s12041-019-1105-2
  87. 87. Rai V, Sreenu K, Pushpalatha B, Babu AP, Brajendra SG, Sarla N. Swarna/Oryza nivara and KMR3/O. rufipogon introgression lines tolerant to drought and salinity. DRR Newsl. 2010;8(4):1-4.
  88. 88. Wambugu PW, Furtado A, Waters DL, Nyamongo DO, Henry RJ. Conservation and utilization of African Oryza genetic resources. Rice. 2013;6:29. https://doi.org/10.1186/1939-8433-6-29
  89. 89. Brar DS, Khush GS. Transferring genes from wild species into rice. In: Khush GS, Brar DS, Hardy B, editors. Rice genetics IV. Wallingford: CABI; 2001. p. 1-18. https://doi.org/10.1079/9780851996011.0000
  90. 90. Gouda PK, Kumar Varma CM, Saikumar S, Kiran B, Shenoy V, Shashidhar HE. Direct selection for grain yield under moisture stress in Oryza sativa cv. IR58025B × Oryza meridionalis population. Crop Sci. 2012;52(2):644-53. https://doi.org/10.2135/cropsci2011.04.0206
  91. 91. Sanchez PL, Wing RA, Brar DS. The wild relative of rice: genomes and genomics. In: Zhang Q, Wing RA, editors. Genetics and genomics of rice. New York: Springer; 2013. p. 9-25. https://doi.org/10.1007/978-1-4614-7903-1_2
  92. 92. Jones MP, Dingkuhn M, Aluko GK, Semon M. Interspecific Oryza sativa L. × O. glaberrima Steud. progenies in upland rice improvement. Euphytica. 1997;94:237-46. https://doi.org/10.1023/A:1002969932224
  93. 93. Rahim HA, Zarifth SK, Bhuiyan MA, Narimah MK, Wickneswari R, Abdullah MZ, et al. Evaluation and characterization of advanced rice mutant lines MR219-4 and MR219-9 under drought condition. Res Dev Semin. 2012;44:26-8.
  94. 94. Soe HM, Myat M, Khaing ZL, Nyo NM, Phyu PT. Development of drought tolerant mutant from rice var. Manawthukha through mutation breeding technique using 60Co gamma source. Int J Innov Res Sci Eng Technol. 2016;4:11205-12.
  95. 95. Hallajian MT, Ebadi AA, Mohammadi M, Muminjanov H, Jamali SS, Aghamirzaei M. Integration of mutation and conventional breeding approaches to develop new superior drought-tolerant plants in rice (Oryza sativa). Annu Res Rev Biol. 2014;4(7):1173-88. https://doi.org/10.9734/ARRB/2014/5935
  96. 96. Dwiningsih Y, Kumar A, Thomas J, Yingling S, Pereira A. Identification of QTLs associated with drought resistance traits at reproductive stage in K/Z RILs rice population. In: 5th Annual Meeting of the Arkansas Bioinformatics Consortium (AR-BIC 2020); 2020.
  97. 97. Paul T, Debnath S, Das SP, Natarajan S, Perveen K, Alshaikh NA, et al. Identification of major and stable QTLs conferring drought tolerance in rice RIL populations. Curr Res Biotechnol. 2023;5:100125. https://doi.org/10.1016/j.crbiot.2023.100125
  98. 98. Yi Y, Hassan MA, Cheng X, Li Y, Liu H, Fang W, et al. QTL mapping and analysis for drought tolerance in rice by genome-wide association study. Front Plant Sci. 2023;14:1223782. https://doi.org/10.3389/fpls.2023.1223782
  99. 99. Chen L, Ma J, Ma X, Cui D, Han B, Sun J, et al. QTL analysis of drought tolerance traits in rice during the vegetative growth period. Euphytica. 2023;219(3):33. https://doi.org/10.1007/s10681-022-03151-4
  100. 100. Satrio RD, Fendiyanto MH, Supena ED, Suharsono S, Miftahudin M. Mapping and identification of QTL for agro-physiological traits in rice (Oryza sativa L.) under drought stress. Plant Gene. 2023;33:100397. https://doi.org/10.1016/j.plgene.2022.100397
  101. 101. Chen L, Guo H, Li Y, Dong Q, He W, Wu C, et al. QTL mapping and identification of candidate genes for heat tolerance at the flowering stage in rice. Front Genet. 2021;11:621871. https://doi.org/10.3389/fgene.2020.621871
  102. 102. Huang S, Cao J, Zhang J, Yang G, Li Z, Gong H, et al. Favorable QTLs from Oryza longistaminata improve rice drought resistance. BMC Plant Biol. 2022;22(1):136. https://doi.org/10.1186/s12870-022-03540-0

Downloads

Download data is not yet available.