Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Cassava intercropping systems for enhanced land productivity and farmer livelihoods: A review

DOI
https://doi.org/10.14719/pst.8409
Submitted
20 March 2025
Published
26-07-2025

Abstract

Cassava is a tropical root vegetable from the Euphorbiaceae family, commonly cultivated for its starchy roots. It serves as a significant source of carbohydrates and calories, especially in Africa, where it contributes to more than 65 % of the global cassava production. Due to its long growth duration, broad spacing requirements, and slow early–stage development, this crop presents an opportunity for interplanting with short–duration species, thereby enhancing resource utilisation, land–use efficiency and overall biological productivity. Cassava–based intercropping is widely practised in tropical regions with moderate to high humidity. Intercropping offers several advantages, including enhanced pest control, improved soil health and more effective weed management. Growing cassava alongside short–term crops, such as maize or legumes, can enhance resource utilisation, increase yields and improve the efficiency of land use. The Land Equivalent Ratio (LER) assesses the biological efficiency and economic benefits of intercropping systems about monocultures. Cassava–maize intercropping is an extensively utilized and efficient system, as the crops exhibit complementary growth habits and resource needs. Growing cassava with legumes like cowpea, groundnut and soybean can boost soil fertility via nitrogen fixation, improve weed management and raise total productivity per land area. Intercropping can also reduce the risks associated with monoculture and offer additional sources of income for small landholders.  

References

  1. 1. Pugalendhi L, M Velmurugan. Performance of short duration cassava accessions for improved tuber yield and quality. Pharma Innov J 2021;10(2):718–20. Available from: https://www.thepharmajournal.com/archives/2021/vol10issue2/PartJ/10–11–215–986.pdf
  2. 2. Food and Agriculture Organization. The world cassava economy. : facts, trends and outlook [Internet]. Rome: FAO; 2000 [cited 2025 Feb 25]. Available from: https://www.fao.org/4/x4007e/X4007E04.htm
  3. 3. Bellotti AC, Smith L, Lapointe SL. Recent advances in cassava pest management. Annu Rev of Entomol. 1999;44(1):343–70. https://doi.org/10.1146/annurev.ento.44.1.343
  4. 4. Mohidin SR, Moshawih S, Hermansyah A, Asmuni MI, Shafqat N, Ming LC. Cassava (Manihot esculenta Crantz): A systematic review for the pharmacological activities, traditional uses, nutritional values and phytochemistry. J Evid Based Integr Med. 2023 28:2515690X231206227. https://doi.org/10.1177/2515690X23120622
  5. 5. Gezahegn B, Tadesse A, Tadesse A, Kelifa Z. Effect of cassava legumes intercropping on yield and yield components of compound crops in Jinka on station, Southern Ethiopia. Int J Agric Res Innov Technol. 2022;12(1):30–3. https://doi.org/10.3329/ijarit.v12i1.61028
  6. 6. Edwards DG, Asher CJ, Wilson GL. Mineral nutrition of cassava and adaptation to low fertility conditions. In: Proceedings of the Fourth Symposium of the International Society for Tropical Root Crops 1977. Ottawa, (ON), IDRC; 1977. Available from: https://idl-bnc-idrc.dspacedirect.org/items/b2812a19-4282-42da-8d42-19ff876fa13d
  7. 7. Food and Agriculture Organization. The global cassava development strategy, Cassava for livestock feed in sub–Saharan Africa. Rome: FAO; 2004. Available from: http://www.fao.org/docrep/007/j1255e/j1255e00.htm#Contents
  8. 8. Food and Agriculture Organization of the united Nations 2025. FAOSTAT – Crop and livestock statistics [Internet]. 2025 [cited 2025 Jun 2]. Available from: https://www.fao.org/faostat/en/#data/QCL/visualize
  9. 9. Masamha B, Thebe V, Uzokwe VN. Mapping cassava food value chains in Tanzania's smallholder farming sector: The implications of intra–household gender dynamics. J Rural Stud. 2018 Feb 1;58:82–92. https://doi.org/10.1016/j.jrurstud.2017.12.011
  10. 10. Food and Agriculture Organization. FAOSTAT [Internet]. 2025 [cited 2025 Jun 2]. Available from: http://www.fao.org/faostat/en/#hom
  11. 11. Edition S. Cassava research and development strategies in India. In: Holwer RH,editor. Cassava research and development in Asia: exploring new opportunities for an ancient crop. Proceedings of the 7th regional workshop; 2002 Oct 28–Nov 1; Bangkok, Thailand. Centro Internacional de Agricultura Tropical (CIAT); 2007. p. 13–24. https://doi.org/10.1002/efd2.127
  12. 12. Scaria SS, Balasubramanian B, Meyyazhagan A, Gangwar J, Jaison JP, Kurian JT, et al. Cassava (Manihot esculenta Crantz)—A potential source of phytochemicals, food and nutrition—An updated review. eFood. 2024;5(1):e127. https://doi.org/10.1002/efd2.127
  13. 13. Cassava Processing Market Report by End–Use (Food Industry, Feed Industry and Others) and Region 2025–2033. International Market Analysis Research and Consulting Group [Internet]. [cited 2025 Jun 2]. Available from: https://www.imarcgroup.com/cassava-processing-plant
  14. 14. Immanuel S, Jaganathan D, Prakash P, Sivakumar PS. Cassava for food security, poverty reduction and climate resilience: A review. Indian J Ecol. 2024;51(1):21–31. https://doi.org/10.55362/IJE/2024/4191
  15. 15. Abbasdokht H, Chaichi MR, Asadi S, Nazari M, Manafi Noran M, Khademi HR. Effects of types of nitrogenous fertilizer (biological, chemical, integrative) and cropping mixes on some forage–medicine characteristics in additive intercropping of sorghum (Sorghum bicolor [L.] Moench) with fenugreek (Trigonella foenum–graecum L.). Arch Agron Soil Sci. 2016 Dec 1;62(12):1741–52. https://doi.org/10.1080/03650340.2016.1166212
  16. 16. Maitra S, Hossain A, Brestic M, Skalicky M, Ondrisik P, Gitari H, et al. Intercropping—A low-input agricultural strategy for food and environmental security. Agronomy. 2021;11(2):343. https://doi.org/10.3390/agronomy11020343
  17. 17. Mutsaers HJ, Ezumah HC, Osiru DS. Cassava–based intercropping: a review. Field Crops Res. 1993;34(3–4):431–57. Available from: https://biblio.iita.org/documents/S93ArtMutsaersCassavaInthomDev.pdf67e35e7661ec54c9df2d17e3aa451cea.pdf
  18. 18. Mead R, Willey R. The concept of a 'land equivalent ratio 'and advantages in yields from intercropping. Exp Agric. 1980;16(3):217–28. https://doi.org/10.1017/S0014479700010978
  19. 19. Silva DV, Ferreira EA, Oliveira MC, Pereira GA, Braga RR, dos Santos JB, et al. Productivity of cassava and other crops in an intercropping system. Cienc Investig Agrar. 2016;43(1):159–66. https://doi.org/10.4067/S0718-16202016000100015
  20. 20. Onwueme IC, Sinha TD. Field crop production in Tropical Africa. Ede, The Netherlands: CTA; 1991. p. 545. Available from: https://cgspace.cgiar.org/items/62dfe820-3d03-497c-b0ae-7e3282472719
  21. 21. Hoshikawa K. Significance of legume crops in improving the productivity and stability of cropping systems. In: Phosphorus nutrition of grain legumes in the semi–arid tropics. India: ICRISAT; 1991. p. 173–81. Available from: https://oar.icrisat.org/474/1/RA_00156.pdf
  22. 22. Iqbal N, Hussain S, Ahmed Z, Yang F, Wang X, Liu W, et al. Comparative analysis of maize–soybean strip intercropping systems: A review. Plant Prod Sci. 2019;22(2):131–42. http://doi.org/10.1080/1343943X.2018.1541137
  23. 23. Aye TM, Howeler R. Cassava agronomy: Intercropping systems. In: The cassava handbook: A reference manual based on the Asian regional cassava training course. Bangkok, Thailand: Centro Internacional de Agricultura Tropical (CIAT), the Department of Agriculture (DOA) and the Thai Tapioca Development Institute (TTDI) of Thailand; 2012. p. 613–25. Available from: https://hdl.handle.net/10568/55599
  24. 24. Polthanee A, Wanapat S, Wanapat M, Wachirapokorn C. Cassava–Legumes intercropping: A potential food–feed system for dairy farmers. In: International Workshop on Current Research and Development on Use of Cassava as Animal Feed; 2001 Jul 23–24; Khon Kaen University, Thailand. 2001.
  25. 25. Hussen A. Important of applying intercropping for sustainable crop production: A Review. Int J Res Agron. 2021;4:37–40. Available from: https://www.agronomyjournals.com/article/view/81/4-1-22B
  26. 26. Padmapriya S, Balasubramanian R, Sathiyamurthy VA. Weed management studies in cassava (Manihot esculenta L.) intercropping systems under irrigated conditions. J Hortic Sci. 2008;3(2):141–5. https://doi.org/10.24154/jhs.v3i2.577
  27. 27. Mohan Kumar CR, Hrishi N. Intercropping systems with cassava in Kerala State, India. In: Intercropping with cassava: proceedings of an international workshop held at Trivandrum, India; 1978 Nov 27–Dec 1. Ottawa, ON, CA: IDRC; 1978.
  28. 28. Dumanski J, Peiretti R. Modern concepts of soil conservation. Int Soil Water Conserv Res. 2013 Jun 1;1(1):19–23. https://doi.org/10.1016/S2095-6339(15)30046-0
  29. 29. Delaquis E, de Haan S, Wyckhuys KA. On–farm diversity offsets environmental pressures in tropical agro–ecosystems: a synthetic review for cassava–based systems. Agric Ecosyst Environ. 2018 Jan 1;251:226–35. https://doi.org/10.1016/j.agee.2017.09.037
  30. 30. Tarawali SA, Singh BB, Gupta SS, Tabo R, Harris F, Nokoe S, et al. Cowpea as a key factor for a new approach to integrated crop–livestock systems research in the dry savannas of West Africa. ISBN: 9781311991, 9789781311994.
  31. 31. Thamburaj S. Research accomplishments in tapioca at Tamil Nadu Agricultural University. In: Green Book on Tapioca. 1990. p. 16–8.
  32. 32. Okigbo BN, Greenland DJ. Intercropping systems in tropical Africa. Multiple Cropping. 1976;27:63–101. https://doi.org/10.2134/asaspecpub27.c5
  33. 33. Leihner, D.E. Cultural control of weeds in cassava. In: Weber, E.J., Toro, J.C., Graham, M., editors, cassava cultural practices. Proceedings of a workshop, Salvador, Bahia, Brazil, 18–21 March. Ottawa (Canada): International Development Research Centre (IDRC); 1980. p. 107–11.
  34. 34. Dapaah HK, Asafu–Agyei JN, Ennin SA, Yamoah C. Yield stability of cassava, maize, soya bean and cowpea intercrops. J Agric Sci. 2003;140(1):73–82. https://doi.org/10.1017/S0021859602002770
  35. 35. Ekwaro B, Wanaku B, Katuromunda S. Growth and yield response of newly released cassava genotypes and hybrid maize to intercropping. Int J Res–Granthaalayah. 2019;7(7):6–21. https://doi.org/10.5281/zenodo.3354225
  36. 36. Ezumah HC, Lawson TL, Bjarnason M. Growth, yield and land use efficiency of intercropped cassava and maize. [Internet]. 1991. Available from: https://ecommons.cornell.edu/bitstreams/cb2aeca3-7675-446a-9f30-3d756295391d/download.
  37. 37. Amanullah MM, Somasundaram E, Vaiyapuri K, Sathyamoorthi K. Intercropping in cassava–a review. Agric Rev. 2007;28(3):179–87.
  38. 38. Ikeorgu JE. Performance of yam minituber/maize intercrop in the humid tropics of Southeast Nigeria. Niger Agric J. 2002;33:83–7.
  39. 39. Awal MA, Koshi H, Ikeda T. Radiation interception and use by maize/peanut intercrop canopy. Agric For Meteorol. 2006;139(1–2):74–83. https://doi.org/10.1016/j.agrformet.2006.06.001
  40. 40. Negash F, Mulualem T. Enhanced land use system through cassava/maize intercropping in the south region of Ethiopia. Sky J Agric Res. 2014;3(10):196–200.
  41. 41. Adeniyan ON, Aluko OA, Olanipekun SO, Olasoji JO, Aduramigba–Modupe VO. Growth and yield performance of cassava/maize intercrop under different plant population density of maize. J Agric Sci. 2014 Aug 1;6(8):35. https://doi.org/10.5539/jas.v6n8p35
  42. 42. Nwokoro CC, Kreye C, Necpalova M, Adeyemi O, Barthel M, Pypers P, et al. Cassava–maize intercropping systems in southern Nigeria: Radiation use efficiency, soil moisture dynamics and yields of component crops. Field Crops Res. 2022;283:108550. https://doi.org/10.1016/j.fcr.2022.108550
  43. 43. He C, Zhou B, Wang H, Wei Y, Huang J. A first–year maize/cassava relay intercropping system improves soil nutrients and changes the soil microbial community in the symbiotic period. Front Microbiol. 2023;14:1087202. https://doi.org/10.3389/fmicb.2023.1087202
  44. 44. Schons A, Streck NA, Storck L, Buriol GA, Zanon AJ, Pinheiro DG, et al. Arranjos de plantas de mandioca e milho em cultivo solteiro e consorciado: crescimento, desenvolvimento e produtividade. Bragantia. 2009;68:155–67. [in Portuguese].https://doi.org/10.1590/S0006-87052009000100017
  45. 45. Schulthess F, Chabi–Olaye A, Gounou S. Multi–trophic level interactions in a cassava–maize mixed cropping system in the humid tropics of West Africa. Bull Entomol Res. 2004 Jun;94(3):261–72. https://doi.org/10.1079/BER2004296
  46. 46. Mansaray A, Karim AB, Yormah TB, Conteh AR. Effect of spatial arrangement and cropping systems on the productivity of cassava–legume intercropping systems in three agro–climatic zones of Sierra Leone. World J Adv Res Rev. 2022;13(3):025–34. https://doi.org/10.30574/wjarr.2022.13.3.0172
  47. 47. Hidoto L, Loha G. Identification of suitable legumes in cassava (Manihot esculenta Crantz)–Legumes intercropping. Afr J Agric Res. 2013;8(21):2559–62. https://doi.org/1010.5897/AJAR12.1976
  48. 48. Mbah EU, Ogidi E. Effect of soybean plant populations on yield and productivity of cassava and soybean grown in a cassava–based intercropping system. Trop Subtrop Agroecosystems. 2012;15(2):241–8. https://doi.org/10.56369/tsaes.886
  49. 49. Tsay JS, Fukai S, Wilson GL. The response of cassava (Manihot esculenta) to spatial arrangement and to soybean intercrop. Field Crops Res. 1987;16(1):19–31.https://doi.org/10.1016/0378-4290(87)90050-5
  50. 50. Ashokan PK, Nair RV, Sudhakara K. Studies on cassava–legume intercropping systems for the Oxisols of Kerala State, India [Internet]. 1985 Oct. 30 [cited 2025 Jun. 2];62(4). Available from: https://journals.sta.uwi.edu/ojs/index.php/ta/article/view/2261
  51. 51. Leihner D. Management and evaluation of intercropping systems with cassava. CIAT; 1983. 84:32–5.
  52. 52. Mason SC, Leihner DE, Vorst JJ. Cassava‐cowpea and cassava‐peanut intercropping. Yield and land use efficiency. Agron J. 1986;78(1):43–6. https://doi.org/10.2134/agronj1986.00021962007800010010x
  53. 53. Jones MT. Effect of cassava–legume intercropping alternatives on crop yields and soil properties in two agroecological zones of Ghana [Doctoral dissertation]. University of Cape Coast; 2016.
  54. 54. Yila KM, Lebbie MS, Conteh AR, Kamara MS, Kamara LI, Gboku ML. Cassava groundnut intercropping: a sustainable land management practice for increasing crop productivity and organic carbon stock on smallholder farms. Agric Sci. 2023;14(1):73–87. https://doi.org/10.4236/as.2023.141006
  55. 55. Dettweiler M, Wilson C, Maltais–Landry G, MacDonald G. Cassava–legume intercropping is more beneficial in low–input systems: A meta–analysis. Field Crops Res. 2023;300:109005. https://doi.org/10.1016/j.fcr.2023.109005
  56. 56. Matata PZ, Passos AM, Masolwa LW, Marcolan AL, Ribeiro RD. Incorporation of leguminous cover crops in smallholder Cassava–based production system in Western Tanzania. Am J Plant Sci. 2017;8(13):3490. https://doi.org/10.4236/ajps.2017.813235
  57. 57. Organo N, Pide JL, Calubaquib MA, Enicola E, Delfin E, Calderon V, et al. Short–term response of soil microbial community and soil bio–chemical properties to soybean intercropping in a Cassava–based cropping system. Philipp Agric Sci. 2024;107(2):6. https://doi.org/10.62550/BQ020022
  58. 58. Hadi MS, Anggraini D, Pramono E, Setiawan K. Cassava (Manihot esculenta Crantz) growth and yield under intercropping with soyabean: The impact of population. In: 1st International Conference on Industry Science Technology and Sustainability (IConISTS 2023); 2024 Aug 2. Atlantis Press; 2024. p. 15–22. https://doi.org/10.2991/978–94–6463–475–4_3
  59. 59. Massawe P, Mtei K, Munishi L, Ndakidemi P. Improving soil fertility and crops yield through maize–legumes (common bean and Dolichos lablab) intercropping systems. J Agric Sci. 2016, 8, 12:148–63. https://doi.org/10.5539/jas.v8n12p148
  60. 60. Ghosh PK, Bandyopadhyay KK, Wanjari RH, Manna MC, Misra AK, Mohanty M, et al. Legume effect for enhancing productivity and nutrient use–efficiency in major cropping systems–an Indian perspective: a review. J Sustain Agric. 2007;30(1):59–86. https://doi.org/10.1300/J064v30n01_07
  61. 61. Lusembo P, Ebong C, Sabiiti EN. Integration of cassava tuber and forage legume seed production for sustained soil fertility. Trop Agric [Internet]. 1998 Jan 30 [cited 2025 Jun 2];75(1). Available from: https://journals.sta.uwi.edu/ojs/index.php/ta/article/view/1536
  62. 62. Giller KE, Mpepereki S, Mapfumo P, Kasasa P, Sakala W, Phombeya H, et al. Putting legume N₂-fixation to work in cropping systems of southern Africa. In: Fabio O, Pedrosa M, , Geoffrey Y, William EN, editors. Nitrogen fixation: from molecules to crop productivity. 2000. p. 525–30. https://doi.org/10.1007/0–306–47615–0_294
  63. 63. Salau AW, Olasantan FO, Bodunde JG, Makinde EA. Soil temperature and moisture content changes with growth and yield of cassava/vegetable intercrops. Arch Agron Soil Sci. 2015 Apr 3;61(4):447–60. https://doi.org/10.1080/03650340.2014.939958
  64. 64. Ekanayake IJ, Osiru DS, Porto MC. Agronomy of cassava. Ibadan: IITA; 1997.
  65. 65. Olasantan FO. Cassava cultivation management for sustainable vegetable production in intercropping with okra. J Sustain Agric. 2005;27(2):53–68. https://doi.org/10.1300/J064v27n02_05
  66. 66. Muoneke CO, Mbah EU. Productivity of cassava/okra intercropping systems as influenced by okra planting density. Afr J Agric Res. 2007;2(5):223–31.
  67. 67. Adekunle YA, Olowe VI, Olasantan FO, Okeleye KA, Adetiloye PO, Odedina JN. Mixture productivity of cassava‐based cropping system and food security under humid tropical conditions. Food Energy Secur. 2014;3(1):46–60. https://doi.org/10.1002/fes3.46
  68. 68. Charpentier HRR. Intercropping cassava with Brachiaria sp on degraded hillsides in Madagascar. In: IIIrd World Congress in CA. World Congress on Conservation Agriculture; 2005 Oct; Nairobi: Kenya. GSDM; 2005.
  69. 69. Kiyothong K, Wanapat M. Growth, hay yield and chemical composition of cassava and Stylo 184 grown under intercropping. Asian-Australas J Anim Sci. 2004;17(6):799–807. https://doi.org/10.5713/ajas.2004.799
  70. 70. Idoko SO, Esekhade TU, Anegbe PO, Orimoloye JR, Yakub W. Rubber, maize and cassava intercropping systems on rehabilitated rubber plantation soil in south eastern Nigeria. In: Proceedings of the 46th Annual Conference of the Agricultural Society of Nigeria "Kano 2012". Agricultural Society of Nigeria; 2012 Nov. p. 915.
  71. 71. Silva TS, Silva PS, Braga JD, Silveira LM, Sousa RP. Planting density and yield of cassava roots. Rev Cienc Agron. 2013;44:317–24. https://doi.org/10.1590/S1806–66902013000200014
  72. 72. Maniyam N, Ravindran CS, Velumani R. Weed management in root and tuber crops in India: Critical analysis. J Root Crops. 2013;39(2):13–20. ISSN 0378–2409.
  73. 73. Olorunmaiye PM, Olorunmaiye KS. Effect of integrated weed management on weed control and yield components of maize and cassava intercrop in a southern Guinea savanna ecology of Nigeria. Aust J Crop Sci. 2009;3(3):129–36.
  74. 74. Iyagba AG. Weed control in a cassava/fluted pumpkin intercrop with selected herbicides. Niger J Hortic Sci. 2004. https://doi.org/10.4314/njhs.v8i1.3360
  75. 75. Nyi T, Mucheru–Muna M, Shisanya CA, Lodi–lama JP, Mutuo P, Pypers P, et al. Effect of delayed cassava planting on yields and economic returns of a cassava groundnut intercrop in the Democratic Republic of Congo. https://doi.org/10.12691/wjar–2–3–3
  76. 76. Osundare B. Effects of different interplanted legumes with cassava on major soil nutrients, weed biomass and performance of cassava (Manihot esculenta Crantz) in the southwestern Nigeria. ASSET: (Ser A)}. 2010 Nov 24;7(1):216–27. ISSN 1595—9694.
  77. 77. Ibeawuchi II, Dialoke SA, Ogbede KO, Ihejirika GO, Nwokeji EM, Chigbundu IN, et al. Influence of yam/cassava-based intercropping systems with legumes in weed suppression and disease/pest incidence reduction. J Am Sci. 2007;3(1):49–59.
  78. 78. Taah KJ, Buah JN, OgyiriAdu E. Evaluation of spatial arrangement of legumes on weed suppression in cassava production. Afr J Agric Res. ISSN 1990–6145.
  79. 79. Amosun JO, Aduramigha–Modupe V. Influence of groundnut populations on weed suppression in cassava–groundnut systems. J Agric Sci. 2016 May 25;8(5):72–8. http://dx.doi.org/10.5539/jas.v8n5p72
  80. 80. Hernández A, Ramos R, Sánchez J, Rodríguez O. Evaluation of weed control in a cassava–bean intercropping system. Agronomía Mesoamericana. 2015;10:67–71. https://doi.org/10.15517/am.v10i1.19451
  81. 81. Weerarathne LV, Marambe B, Chauhan BS. Does intercropping play a role in alleviating weeds in cassava as a non–chemical tool of weed management?–A review. Crop Prot. 2017;95:81–8. https://doi.org/10.1016/j.cropro.2016.08.028
  82. 82. Olasantan FO, Lucas EO, Ezumah HC. Effects of intercropping and fertilizer application on weed control and performance of cassava and maize. Field Crops Res. 1994;39(2–3):63–9. https://doi.org/10.1016/0378–4290(94)90009–4
  83. 83. Tang X, Zhong R, Jiang J, He L, Huang Z, Shi G, et al. Cassava/peanut intercropping improves soil quality via rhizospheric microbes increased available nitrogen contents. BMC Biotechnol. 2020;20:1–1. https://doi.org/10.1186/s12896–020–00606–1
  84. 84. Benti G, Degafa G, Jafar M, Birhanu H. Effect of cassava intercropping with legume crops followed by sorghum on growth, yield and yield parameters of cassava–based double cropping system. Plant. 2020;8(2):37–42. https://doi.org/10.11648/j.plant.20200802.13
  85. 85. Mbah EU, Muoneke CO, Okpara DA. Evaluation of cassava/soybean intercropping system as influenced by cassava genotypes. Niger Agric J. 2003;34:11–8. https://doi.org/10.4314/naj.v34i1.3164
  86. 86. Legodi KD, Ogola JB. Cassava–legume intercrop: I. Effects of relative planting dates of legumes on cassava productivity. Acta Agric Scand B Soil Plant Sci. 2020;70(2):150–7. https://doi.org/10.1080/09064710.2019.1682185
  87. 87. Debra LK. The effects of relative planting dates of legumes on the productivity of cassava–legume intercrop [doctoral dissertation]. University of Venda; 2016.
  88. 88. Ndonda A, Mahungu N, Frangoie A, Moango A. Enhancing yield and profitability of cassava in the savannah and forest zones of the Democratic Republic of Congo through intercropping with groundnut. J Appl Biosci. 2015;89:8320–8. https://doi.org/10.4314/jab.v89i1.6
  89. 89. Islami T, Guritno B, Utomo WH. Performance of cassava (Manihot esculenta Crantz) based cropping systems and associated soil quality changes in the degraded tropical uplands of East Java, Indonesia. J Trop Agric. 2011;49:31–9.
  90. 90. Pellet DM, El–Sharkawy MA. Cassava varietal response to fertilization: growth dynamics and implications for cropping sustainability. Exp Agric. 1997 Jul;33(3):353–65. https://doi.org/10.1017/S0014479797003013
  91. 91. Ardjasa WS ando H, Kimura M. Yield and soil erosion among cassava-based cropping patterns in South Sumatra. Soil Sci Plant Nutr. 2001 Mar 1;47(1):101–12. https://doi.org/10.1080/00380768.2001.10408372
  92. 92. Odemerho FO, Avwunudiogba A. The effects of changing cassava management practices on soil loss: a Nigerian example. Geogr J. 1993 Mar 1:63–9. https://doi.org/10.2307/3451490
  93. 93. Hulugalle NR, Ezumah HC, Leyman T. Changes in surface soil properties of a no–tilled tropical Alfisol due to intercropping maize, cassava and egusi melon. Field Crops Res. 1994;36(3):191–200. https://doi.org/10.1016/0378–4290(94)90111–2
  94. 94. Aweto AO, Obe O, Ayanniyi OO. Effects of shifting and continuous cultivation of cassava (Manihot esculenta) intercropped with maize (Zea mays) on a forest alfisol in south–western Nigeria. J Agric Sci. 1992;118(2):195–8. https://doi.org/10.1017/S0021859600068787
  95. 95. Cenpukdee U, Fukai S. Cassava/legume intercropping with contrasting cassava cultivars. 1. Competition between component crops under three intercropping conditions. Field Crops Res. 1992 Apr 1;29(2):113–33. https://doi.org/10.1016/0378–4290
  96. 96. Iijima M, Izumi Y, Yuliadi E, Sunyoto S, Ardjasa WS. Cassava–based intercropping systems on Sumatra Island in Indonesia: Productivity, soil erosion and rooting zone. Plant Prod Sci. 2004 Jan 1;7(3):347–55. https://doi.org/10.1626/pps.7.347
  97. 97. Kaluba P, Mwamba S, Moualeu–Ngangue DP, Chiona M, Munyinda K, Winter E, et al. Performance of cassava under lime, fertilizer and legume intercropping on exhausted land in Northern Zambia. Int J Agron. 2022;2022(1):3649355. https://doi.org/10.1155/2022/3649355
  98. 98. Fanou AA, Zinsou VA, Wydra K. Cassava bacterial blight: A devastating disease of cassava. In Cassava 2017. IntechOpen. https://doi.org/10.5772/intechopen.71527
  99. 99. Gold CS, Altieri MA, Bellotti AC. Cassava intercropping and pest incidence: a review illustrated with a case study from Colombia. Int J Pest Manage. 1989;35(4):339–44. https://doi.org/10.1080/09670878909371398
  100. 100.Sikirou R, Wydra K. Effect of intercropping cowpea with maize or cassava on cowpea bacterial blight and yield. J Plant Dis Prot. 2008;115(4):145–51. https://doi.org/10.1007/BF03356262
  101. 101.Gold CS. The effects of cropping systems on cassava whiteflies in Colombia: Implications for control of African cassava mosaic virus disease. Afr Crop Sci J. 1994;2(4):423–36.
  102. 102.Fargette D, Fauquet C. A preliminary study on the influence of intercropping maize and cassava on the spread of African cassava mosaic virus by whiteflies. Asp Appl Biol. 1988;17:195–202.
  103. 103.Fargette D, Fauquet C, Grenier E, Thresh JM. The spread of African cassava mosaic virus into and within cassava fields. J Phytopathol. 1990;130(4):289–302. https://doi.org/10.1111/j.1439–0434.1990.tb01179.x
  104. 104.Ahohuendo BC, Sarkar S. Partial control of the spread of African cassava mosaic virus in Benin by intercropping/Partielle Bekämpfung der Verbreitung des Afrikanischen Maniokmosaikvirus in Benin durch Mischkultur. Z Pflanzenkrankheiten Pflanzenschutz/J Plant Dis Prot. 1995:249–56.
  105. 105.Fondong VN, Thresh JM, Zok S. Spatial and temporal spread of cassava mosaic virus disease in cassava grown alone and when intercropped with maize and/or cowpea. J Phytopathol. 2002 Aug;150(7):365–74. https://doi.org/10.1046/j.1439–0434.2002.00775.x
  106. 106.Antoine FA, Kerstin WY. Effect of intercropping on the development of cassava bacterial blight.J Plant Pathol Microbiol. 2018;6(3):531–7. https://doi.org/10.18006/2018.6(3).531.537
  107. 107.Uzokwe VN, Mlay DP, Masunga HR, Kanju E, Odeh IO, Onyeka J. Combating viral mosaic disease of cassava in the Lake Zone of Tanzania by intercropping with legumes. Crop Prot. 2016;84:69–80. https://doi.org/10.1016/j.cropro.2016.02.013
  108. 108.Kando K, Bitane B. Cultivation of cassava (Manihot esculentus C.) with selected legumes for growth, yield and economic advantages as climate change mitigation. Int J Smart Agric. 2023:1(1):1–10.https://doi.org/10.54536/ijsa.v1i1.1682
  109. 109.Fening JO, Gyapong TA, Ababio F, Gaisie E. Effect of site characteristics on the productivity and economic returns from cassava legume intercropping in Ghana. Afr J Environ Sci Technol. 2009;3(10).
  110. 110.Anuebunwa FO. A bio–economic evaluation of intercropping arrangements in a yam–cassava based cropping system in the rain forest belt of Nigeria. Biol Agric Hortic. 1992 Jan 1;8(3):251–60. https://doi.org/10.1080/01448765.1992.9754599
  111. 111.Olasantan FO, Salau AW, Onuh EE. Influence of cassava (Manihot esculenta) intercrop on growth and fruit yields of pepper (Capsicum spp.) in south–western Nigeria. Exp Agric. 2007;43(1):79–95. https://doi.org/10.1017/S0014479706004200
  112. 112.Melifonwu AA. Weeds and their control in cassava. Afr Crop Sci J. 1994;2(4):519–30.
  113. 113.Sajar S. Identification of weeds in cassava fields (Manihot esculenta Crantz) in Glugur Rimbun, Sampecita Village, Kutalimbaru District. In: The International Conference on Education, Social Sciences and Technology (ICESST); 2023 Nov 27; Vol. 2, No. 2. 2023. p. 293–307. Available from: https://doi.org/10.55606/icesst.v2i2.326
  114. 114.Zuofa K, Tariah NM, Isirimah NO. Effects of groundnut, cowpea and melon on weed control and yields of intercropped cassava and maize. Available from: https://doi.org/10.1016/0378–4290(92)90016–3
  115. 115.Kang BT, Wilson GF. Effect of maize plant population and nitrogen application on maize cassava intercrop. In: Terry ER, Oduro KA, Caveness F, editors. Tropical root crops: Research strategies for the 1980s. Ottawa: International Development Research Centre; 1981.
  116. 116.Osiru DS, Hahn SK, Ezumah HC. Evaluation of cassava genotypes for intercropping system. Nigeria Agricultural Journal. 2004;34(1):11–8.
  117. 117.Ijoyah MO, Bwala RI, Iheadindueme CA. Response of cassava, maize and egusi melon in a three crop intercropping system at Makurdi, Nigeria. Int J Dev Sustain. 2012;1(2):135–44.
  118. 118.Okonji CJ, Okeleye KA, Olowe VI, Ajayi EO. Potentials of intercropping rice (Oryza sativa L.) and cassava (Manihot esculenta Crantz) of different morphotypes in the transition zone of south west Nigeria. Int J Agric Res. 2007;2(5):476–82. https://doi.org/10.3923/ijar.2007.476.482
  119. 119.Banito A, Kpémoua EK, Tedihou E, Wydra K. Effect of intercropping on cassava bacterial blight caused by Xanthomonas axonopodis pv. Manihot in Togo. Net J Agric Sci. 2010;10:66–71. https://doi.org/10.30918/NJAS.104.22.021
  120. 120.Moreno RA. Crop protection implications of cassava intercropping. In: Weber E, Nestel B Campbell N, editors. Intercropping with cassava. Proceedings, International workshop IDRC Ottawa. 1979. p. 113–27.
  121. 121.Zinsou V, Wydra K, Ahohuendo B, Hau B. Effect of soil amendments, intercropping and planting time in combination on the severity of cassava bacterial blight and yield in two ecozones of West Africa Plant Pathol. 2004;53(5):585–95. https://doi.org/10.1046/j.0032–0862.2004.01056.x
  122. 122.Fanou AA, Zinsou VA, Wydra K. Cassava bacterial blight: A devastating disease of cassava. In: Cassava. IntechOpen; 2017 Dec 20. Available from: https://doi.org/10.5772/intechopen.71527
  123. 123.Ene LO. Control of cassava bacterial blight (CBB). Trop Root Tuber Crops Newsl. 1977;10:30–1.
  124. 124.Ayoola OT, Makinde EA. Influence of cassava population density on the growth and yield performance of cassava–maize intercrop with a relayed cowpea. Trop Subtrop Agroecosys. 2008;8(3):235–41.
  125. 125.Aminu FO, Okeowo TA. Economic analysis of cassava mixed farming enterprises in Epe Local Government Area, Lagos State, Nigeria. Appl Trop Agric. 2016;21(3):122–30.
  126. 126.Samson D. Medicinal plants as intercrops in cassava (Manihot esculenta Crantz) [dissertation]. Vellanikkara: KAU; 2021.

Downloads

Download data is not yet available.