Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Terpenes: Multifunctional roles for plant survival and sustainable farming

DOI
https://doi.org/10.14719/pst.8414
Submitted
20 March 2025
Published
22-07-2025

Abstract

Terpenes are the largest class of plant secondary metabolites which play a major role in plant-environmental interactions and serve vital ecological and agricultural functions. Their volatile nature plays a crucial role in pollination and insect attraction by emitting chemical signals that lure pollinators and seed dispersers, while simultaneously repelling herbivores and attracting the predators of the pests. Terpenes exhibit strong antimicrobial and antiviral activities, making them highly effective against pathogens. The insecticidal activity of terpenes offers an effective and eco-friendly alternative to synthetic pesticides, helping to kill pests in an environmentally sustainable manner. Allelopathic interactions of terpenes suppress the germination and growth of weeds and offer sustainable weed management. Besides, terpene biosynthesis in plants is influenced by abiotic stresses such as drought, elevated temperature, light stress and UV radiation highlighting the critical role in defense and adaptation mechanisms in relation to environmental changes. β-caryophyllene, a sesquiterpene is crucial for pollination, pest management, pathogen resistance, allelopathy and stress tolerance, enhancing survival and sustainability of plants. Modulation of terpene levels due to climate change emphasize their role in improving plant resilience to changing environments. The involvement of terpenes in diverse biotic and abiotic interactions underscores the need for continued research to harness their sustainable applications in agriculture, ecology and beyond.

References

  1. 1. Roberts SC. Production and engineering of terpenoids in plant cell culture. Nature Chemical Biology. 2007;3(7):387–95. https://doi.org/10.1038/nchembio.2007.8
  2. 2. Seiber JN, Coats J, Duke SO, Gross AD. Biopesticides: state of the art and future opportunities. Journal of Agricultural and Food Chemistry. 2014;62(48):11613–9. https://doi.org/10.1021/jf504252n
  3. 3. Langenheim JH. Higher plant terpenoids: a phytocentric overview of their ecological roles. Journal of Chemical Ecology. 1994;20:1223–80. https://doi.org/10.1007/BF02059809
  4. 4. El-Gaied L, Mahmoud A, Salem R, Elmenofy W, Saleh I, Abulreesh HH, et al. Characterization, cloning, expression and bioassay of vip3 gene isolated from an Egyptian Bacillus thuringiensis against whiteflies. Saudi Journal of Biological Sciences. 2020;27(5):1363–7.https://doi.org/10.1016/j.sjbs.2019.12.013
  5. 5. Wilcock CC, Neiland MR, editors. Reproductive characters as priority indicators for rare plant conservation. Planta Europa: Proceedings of the second European conference on the conservation of wild plants; Swedish Threatened Plants Unit & Plantlife Uppsala, Sweden/London: UK. 1998. p. 221–30.
  6. 6. Majetic CJ, Raguso RA, Ashman TL. The sweet smell of success: floral scent affects pollinator attraction and seed fitness in Hesperis matronalis. Functional Ecology. 2009;23(3):480–7. https://doi.org/10.1111/j.1365-2435.2008.01517.x
  7. 7. Anderson JA, Padhye SR. Protein aggregation, radical scavenging capacity, and stability of hydrogen peroxide defense systems in heat-stressed Vinca and sweet pea leaves. Journal of the American Society for Horticultural Science. 2004;129(1):54–9. https://doi.org/10.21273/JASHS.129.1.0054
  8. 8. Chauhan BS. Grand challenges in weed management. Frontiers in Agronomy. 2020;1:3. https://doi.org/10.3389/fagro.2019.00003
  9. 9. Poudyal S, Cregg BM. Irrigating nursery crops with recycled run-off: a review of the potential impact of pesticides on plant growth and physiology. HortTechnology. 2019;29(6):716–29. https://doi.org/10.21273/HORTTECH04302-19
  10. 10. Cheng F, Cheng Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontiers in Plant Science. 2015;6:1020. https://doi.org/10.3389/fpls.2015.01020
  11. 11. González-Vega J, Walk C, Murphy M, Stein H. Requirement for digestible calcium by 25 to 50 kg pigs at different dietary concentrations of phosphorus as indicated by growth performance, bone ash concentration, and calcium and phosphorus balances. Journal of Animal Science. 2016;94(12):5272–85. https://doi.org/10.2527/jas.2016-0751
  12. 12. Kannappan A, Sivaranjani M, Srinivasan R, Rathna J, Pandian SK, Ravi AV. Inhibitory efficacy of geraniol on biofilm formation and development of adaptive resistance in Staphylococcus epidermidis RP62A. Journal of Medical Microbiology. 2017;66(10):1506–15. https://doi.org/10.1099/jmm.0.000570
  13. 13. Condon AG, Richards R, Rebetzke G, Farquhar G. Improving intrinsic water‐use efficiency and crop yield. Crop Science. 2002;42(1):122–31. https://doi.org/10.2135/cropsci2002.1220
  14. 14. Goh HH, Khairudin K, Sukiran NA, Normah M, Baharum S. Metabolite profiling reveals temperature effects on the VOCs and flavonoids of different plant populations. Plant Biology. 2016;18:130–9. https://doi.org/10.1111/plb.12403
  15. 15. Wang X, Xu X, Cui J. The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultrastructure of Cucumis sativus grown under weak light. Photosynthetica. 2015;53(2):213–22. https://doi.org/10.1007/s11099-015-0083-8
  16. 16. Estell RE, Fredrickson EL, James DK. Effect of light intensity and wavelength on concentration of plant secondary metabolites in the leaves of Flourensia cernua. Biochemical Systematics and Ecology. 2016;65:108–14. https://doi.org/10.1016/j.bse.2016.02.019
  17. 17. Banerjee A, Sharkey T. Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Natural Product Reports. 2014;31(8):1043–55. https://doi.org/10.1039/C3NP70124G
  18. 18. Re EB, Brugger S, Learned M. Genetic and biochemical analysis of the transmembrane domain of Arabidopsis 3‐hydroxy‐3‐methylglutaryl coenzyme A reductase. Journal of Cellular Biochemistry. 1997;65(4):443–59. https://doi.org/10.1002/(SICI)1097-4644(19970615)65:4<443::AID-JCB1>3.0.CO;2-O
  19. 19. Lluch MA, Masferrer A, Arró M, Boronat A, Ferrer A. Molecular cloning and expression analysis of the mevalonate kinase gene from Arabidopsis thaliana. Plant Molecular Biology. 2000;42:365–76. https://doi.org/10.1023/A:1006325630792
  20. 20. Henry LK, Thomas ST, Widhalm JR, Lynch JH, Davis TC, Kessler SA, et al. Contribution of isopentenyl phosphate to plant terpenoid metabolism. Nature Plants. 2018;4(9):721–9. https://doi.org/10.1038/s41477-018-0220-z
  21. 21. Calisto BM, Perez‐Gil J, Bergua M, Querol‐Audi J, Fita I, Imperial S. Biosynthesis of isoprenoids in plants: Structure of the 2C‐methyl‐d‐erithrytol 2, 4‐cyclodiphosphate synthase from Arabidopsis thaliana. Comparison with the bacterial enzymes. Protein Science. 2007;16(9):2082–8. https://doi.org/10.1110/ps.072972807
  22. 22. Seemann M, Wegner P, Schünemann V, Bui BT, Wolff M, Marquet A, et al. Isoprenoid biosynthesis in chloroplasts via the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE) from Arabidopsis thaliana is a [4Fe–4S] protein. JBIC Journal of Biological Inorganic Chemistry. 2005;10:131–7. https://doi.org/10.1007/s00775-004-0619-z
  23. 23. Kamran S, Sinniah A, Abdulghani MA, Alshawsh MA. Therapeutic potential of certain terpenoids as anticancer agents: a scoping view. Cancers. 2022;14(5):1100. https://doi.org/10.3390/cancers14051100
  24. 24. Mewalal R, Rai DK, Kainer D, Chen F, Kulheim C, Peter GF, et al. Plant- derived terpenes: A feedstock for speciality biofuels. Trends in Biotechnology. 2017;35(3):227–40. https://doi.org/10.1016/j.tibtech.2016.08.003
  25. 25. Herman A, Herman AP. Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: a review. Journal of Pharmacy and Pharmacology. 2015;67(4): 473–85. https://doi.org/10.1111/jphp.12334
  26. 26. Dötterl S, Jürgens A, Seifert K, Laube T, Weißbecker B, Schütz S. Nursery pollination by a moth in Silene latifolia: the role of odours in eliciting antennal and behavioural responses. New Phytologist. 2006;169(4):707–18. https://doi.org/10.1111/j.1469-8137.2005.01509.x
  27. 27. Terry I, Walter GH, Moore C, Roemer R, Hull C. Odor-mediated push-pull pollination in cycads. Science. 2007;318(5847):70. https://doi.org/10.1126/science.1145147
  28. 28. Chen C, Song Q. Responses of the pollinating wasp Ceratosolen solmsi marchali to odor variation between two floral stages of Ficus hispida. Journal of Chemical Ecology. 2008;34:1536–44. https://doi.org/10.1007/s10886-008-9558-4
  29. 29. Byers KJ, Bradshaw Jr H, Riffell JA. Three floral volatiles contribute to differential pollinator attraction in monkey flowers (Mimulus). Journal of Experimental Biology. 2014;217(4):614–23. https://doi.org/10.1242/jeb.092213
  30. 30. Youngsteadt E, Baca JA, Osborne J, Schal C. Species-specific seed dispersal in an obligate ant-plant mutualism. PloS one. 2009;4(2):e4335. https://doi.org/10.1371/journal.pone.0004335
  31. 31. Nurdiansyah MA, Abduh MY, Ono H, Permana AD. Attractiveness of Tetragonula laeviceps (Hymenoptera: Apidae) to citrus volatile compounds and flower colors in indoor microclimate conditions. Sociobiology. 2024;71(3):e10395-e. https://doi.org/10.13102/sociobiology.v71i3.10395
  32. 32. Radev Z. Honey Bee (Apis mellifera L.) Pollination as an ecological method to increase the quality of lavender essential oil. Agriculturae Conspectus Scientificus. 2023;88(1):85–8.
  33. 33. Gibernau M, Gomes Gonçalves E, Do Amaral Navarro DM, Dália Maia A. Chemical diversity of floral scents in 9 species of Philodendron (Araceae) from French Guiana. Botany Letters. 2023;170(1):53–64. https://doi.org/10.1080/23818107.2022.2144445
  34. 34. de Brito-Machado D, Ramos YJ, Defaveri ACAe, de Queiroz GA, Guimarães EF, de Lima Moreira D. Volatile chemical variation of essential oils and their correlation with insects, phenology, ontogeny and microclimate: Piper mollicomum Kunth, a case of study. Plants. 2022;11(24):3535. https://doi.org/10.3390/plants11243535
  35. 35. Farinasso HC, Consolaro H, Gomes SM, Aguiar AJ. From generalization to pollination syndromes: filtering and dependency on functional-group of pollinators in two cassava wild relatives. Arthropod-Plant Interactions. 2021;15(2):235–47. https://doi.org/10.1007/s11829-021-09811-x
  36. 36. Xu S, Kreitzer C, McGale E, Lackus ND, Guo H, Köllner TG, et al. Allelic differences of clustered terpene synthases contribute to correlated intraspecific variation of floral and herbivory‐induced volatiles in a wild tobacco. New Phytologist. 2020;228(3):1083–96. https://doi.org/10.1111/nph.16739
  37. 37. Nawade B, Shaltiel-Harpaz L, Yahyaa M, Kabaha A, Kedoshim R, Bosamia TC, et al. Characterization of terpene synthase genes potentially involved in black fig fly (Silba adipata) interactions with Ficus carica. Plant Science. 2020;298:110549. https://doi.org/10.1016/j.plantsci.2020.110549
  38. 38. Zhang H, Liu C, Yao JL, Deng CH, Chen S, Chen J, et al. Citrus mangshanensis pollen confers a xenia effect on linalool oxide accumulation in pummelo fruit by enhancing the expression of a cytochrome P450 78A7 gene CitLO 1. Journal of Agricultural and Food Chemistry. 2019;67(34):9468–76. https://doi.org/10.1021/acs.jafc.9b03158
  39. 39. Li Y, Zhu N, Liang X, Zheng L, Zhang C, Li YF, et al. A comparative study on the accumulation, translocation and transformation of selenite, selenate, and SeNPs in a hydroponic-plant system. Ecotoxicology and Environmental Safety. 2020;189:109955. https://doi.org/10.1016/j.ecoenv.2019.109955
  40. 40. Lin BY, Chan PP, Lowe TM. tRNAviz: explore and visualize tRNA sequence features. Nucleic Acids Research. 2019;47(W1):W542–W7. https://doi.org/10.1093/nar/gkz438
  41. 41. Kasali AA, Lawal OA, Eshilokun AO, Olaniyan AA, Opoku AR, Setzer WN. Citrus essential oil of Nigeria part V: Volatile constituents of sweet orange leaf oil (Citrus sinensis). Natural Product Communications. 2011;6(6):1934578X1100600629.
  42. https://doi.org/10.1177/1934578X1100600629
  43. 42. Li H, Li J, Dong Y, Hao H, Ling Z, Bai H, et al. Time-series transcriptome provides insights into the gene regulation network involved in the volatile terpenoid metabolism during the flower development of lavender. BMC Plant Biology. 2019;19:1–17. https://doi.org/10.1186/s12870-019-1908-6
  44. 43. Gibernau M, Maia AC, Amaral Navarro DM. Pollination ecology and floral scent chemistry of Philodendron fragrantissimum (Araceae). Botany Letters. 2021;168(3):384–94. https://doi.org/10.1080/23818107.2021.1909497
  45. 44. della Cuna FS, Giovannini A, Braglia L, Sottani C, Grignani E, Preda S. Chemical composition of the essential oils from leaves and flowers of Passiflora sexocellata and Passiflora trifasciata. Natural Product Communications. 2021;16(4):1934578X211007691. https://doi.org/10.1177/1934578X211007691
  46. 45. Giuliani C, Ascrizzi R, Lupi D, Tassera G, Santagostini L, Giovanetti M, et al. Salvia verticillata: Linking glandular trichomes, volatiles and pollinators. Phytochemistry. 2018;155:53–60. https://doi.org/10.1016/j.phytochem.2018.07.016
  47. 46. Xu C, Luo J, Wang L, Zhu X, Xue H, Huangfu N, et al. Gut bacterial community and gene expression alterations induced by transgenic Bt maize contribute to insecticidal activity against Mythimna separata. Journal of Pest Science. 2024;97(2):685–700. https://doi.org/10.1007/s10340-023-01671-z
  48. 47. Lorenzi V, Muselli A, Bernardini AF, Berti L, Pages JM, Amaral L, et al. Geraniol restores antibiotic activities against multidrug-resistant isolates from gram-negative species. Antimicrobial Agents and Chemotherapy. 2009;53(5):2209–11. https://doi.org/10.1128/AAC.00919-08
  49. 48. Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, et al. Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy. 2005;49(6):2474–8. https://doi.org/10.1128/AAC.49.6.2474-2478.2005
  50. 49. Smid E, Koeken J, Gorris L. Fungicidal and fungistatic action of the secondary plant metabolites cinnarnaldehyde and carvone. 1996.
  51. 50. Dunkić V, Bezić N, Vuko E, Cukrov D. Antiphytoviral activity of Satureja montana L. ssp. variegata (Host) PW Ball essential oil and phenol compounds on CMV and TMV. Molecules. 2010;15(10):6713–21. https://doi.org/10.3390/molecules15106713
  52. 51. Astani A, Reichling J, Schnitzler P. Comparative study on the antiviral activity of selected monoterpenes derived from essential oils. Phytotherapy Research. 2010;24(5):673–9. https://doi.org/10.1002/ptr.2955
  53. 52. Jin J, Guo N, Zhang J, Ding Y, Tang X, Liang J, et al. The synergy of honokiol and fluconazole against clinical isolates of azole‐resistant Candida albicans. Letters in Applied Microbiology. 2010;51(3):351–7. https://doi.org/10.1111/j.1472-765X.2010.02900.x
  54. 53. Oleszek W, Kapusta I, Stochmal A. 20TLC of triterpenes (including saponins). Thin Layer Chromatography in Phytochemistry; CRC Press/Taylor & Francis Group: New York, NY, USA. 2008:519. https://doi.org/10.1201/9781420046786.ch20
  55. 54. Wardini TH, Afifa IN, Esyanti RR, Astutiningsih NT, Pujisiswanto H. The potential of invasive species Praxelis clematidea extract as a bioherbicide for Asystasia gangetica. Biodiversitas Journal of Biological Diversity. 2023;24(9). https://doi.org/10.13057/biodiv/d240914
  56. 55. Abdullah S, Zahoor I. Biopesticides: A green substitute to chemical pesticide.International Journal of Chemical and Biochemical Sciences. 2023;24(4):141–56.
  57. 56. Rashidi S, Yousefi AR, Pouryousef M, Goicoechea N. Effect of arbuscular mycorrhizal fungi on the accumulation of secondary metabolites in roots and reproductive organs of Solanum nigrum, Digitaria sanguinalis and Ipomoea purpurea. Chemical and Biological Technologies in Agriculture. 2022;9(1):23. https://doi.org/10.1186/s40538-022-00288-1
  58. 57. Wang D, Poss J, Donovan T, Shannon M, Lesch S. Biophysical properties and biomass production of elephant grass under saline conditions. Journal of Arid Environments. 2002;52(4):447–56. https://doi.org/10.1006/jare.2002.1016
  59. 58. Garcia CR, Malik MH, Biswas S, Tam VH, Rumbaugh KP, Li W, et al. Nanoemulsion delivery systems for enhanced efficacy of antimicrobials and essential oils. Biomaterials Science. 2022;10(3):633–53. https://doi.org/10.1039/D1BM01537K
  60. 59. Ma H, Chen Y, Chen J, Ji J, He H. Identification and comparison of allelopathic effects from leaf and flower volatiles of the invasive plants Mikania micrantha. Chemoecology. 2021;31(6):355–65. https://doi.org/10.1007/s00049-021-00356-2
  61. 60. Motmainna M, Juraimi AS, Uddin MK, Asib NB, Islam AM, Ahmad-Hamdani MS, et al. Phytochemical constituents and allelopathic potential of Parthenium hysterophorus L. in comparison to commercial herbicides to control weeds. Plants. 2021;10(7):1445. https://doi.org/10.3390/plants10071445
  62. 61. Pannacci E, Masi M, Farneselli M, Tei F. Evaluation of mugwort (Artemisia vulgaris L.) aqueous extract as a potential bioherbicide to control Amaranthus retroflexus L. in maize. Agriculture. 2020;10(12):642. https://doi.org/10.3390/agriculture10120642
  63. 62. Sheibany K, Baghestani meybodi MA, Atri A. Competitive effects of redroot pigweed (Amaranthus retroflexus) on the growth indices and yield of corn. Weed Biology and Management. 2009;9(2):152–9. https://doi.org/10.1111/j.1445-6664.2009.00333.x
  64. 63. Essa AF, El‐Hawary SS, Abd‐El Gawad AM, Kubacy TM, AM El‐Khrisy EE, Elshamy AI, et al. Prevalence of diterpenes in essential oil of Euphorbia mauritanica L.: Detailed chemical profile, antioxidant, cytotoxic and phytotoxic activities. Chemistry & Biodiversity. 2021;18(7):e2100238. https://doi.org/10.1002/cbdv.202100238
  65. 64. Verma P, Blaise D, Sheeba JA, Manikandan A. Allelopathic potential and allelochemicals in different intercrops for weed management in rainfed cotton. Current Science. 2021;120(6):1035. https://doi.org/10.18520/cs/v120/i6/1035-1039
  66. 65. Alizadeh Z, Motafakkerazad R, Salehi-Lisar SY, Zarrini G. Evaluation of the allelopathic effect of wheat and redroot pigweed on growth indices and antioxidant system activity in intercropping. Journal of Plant Protection Research. 2023:97–112. https://doi.org/10.24425/jppr.2023.144508
  67. 66. Wang C, Qi J, Liu Q, Wang Y, Wang H. Allelopathic potential of aqueous extracts from fleagrass (Adenosma buchneroides Bonati) against two crop and three weed species. Agriculture. 2022;12(8):1103. https://doi.org/10.3390/agriculture12081103
  68. 67. Kong Q, Zhou L, Wang X, Luo S, Li J, Xiao H, et al. Chemical composition and allelopathic effect of essential oil of Litsea pungens. Agronomy. 2021;11(6):1115. https://doi.org/10.3390/agronomy11061115
  69. 68. Gong X, Ren Y. Larvicidal and ovicidal activity of carvacrol, p-cymene, and γ-terpinene from Origanum vulgare essential oil against the cotton bollworm, Helicoverpa armigera (Hübner). Environmental Science and Pollution Research. 2020;27:18708–16. https://doi.org/10.1007/s11356-020-08391-2
  70. 69. Park CG, Jang M, Yoon KA, Kim J. Insecticidal and acetylcholinesterase inhibitory activities of Lamiaceae plant essential oils and their major components against Drosophila suzukii (Diptera: Drosophilidae). Industrial Crops and Products. 2016;89:507–13. https://doi.org/10.1016/j.indcrop.2016.06.008
  71. 70. Singh R, Koul O, Rup PJ, Jindal J. Toxicity of some essential oil constituents and their binary mixtures against Chilo partellus (Lepidoptera: Pyralidae). International Journal of Tropical Insect Science. 2009;29(2):93–101. https://doi.org/10.1017/S1742758409990087
  72. 71. Araújo EC, Silveira ER, Lima MA, Neto MA, de Andrade IL, Lima MA, et al. Insecticidal activity and chemical composition of volatile oils from Hyptis martiusii Benth. Journal of Agricultural and Food Chemistry. 2003;51(13):3760–2. https://doi.org/10.1021/jf021074s
  73. 72. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Research. 2017;45(D1):D535–42. https://doi.org/10.1093/nar/gkw1017
  74. 73. Papanastasiou SA, Bali EM, Ioannou CS, Papachristos DP, Zarpas KD, Papadopoulos NT. Toxic and hormetic-like effects of three components of citrus essential oils on adult Mediterranean fruit flies (Ceratitis capitata). PloS One. 2017;12(5):e0177837. https://doi.org/10.1371/journal.pone.0177837
  75. 74. Yadav PA, Suresh G, Rao MS, Shankaraiah G, Rani PU, Babu KS. Limonoids from the leaves of Soymida febrifuga and their insect antifeedant activities. Bioorganic & Medicinal Chemistry Letters. 2014;24(3):888–92. https://doi.org/10.1016/j.bmcl.2013.12.077
  76. 75. Sarria AL, Soares MS, Matos AP, Fernandes JB, Vieira PC, Silva MF. Effect of triterpenoids and limonoids isolated from Cabralea canjerana and Carapa guianensis (Meliaceae) against Spodoptera frugiperda (JE Smith). Zeitschrift Für Naturforschung C. 2011;66(5–6):245–50. https://doi.org/10.1515/znc-2011-5-607
  77. 76. Li MY, Zhang J, Feng G, Satyanandamurty T, Wu J. Khayasin and 2′ S-methylbutanoylproceranolide: Promising candidate insecticides for the control of the coconut leaf beetle, Brontispa longissima. Journal of Pesticide Science. 2011;36(1):22–6. https://doi.org/10.1584/jpestics.G10-52
  78. 77. Wu HB, Wu HB, Wang WS, Liu TT, Qi MG, Feng JC, et al. Insecticidal activity of sesquiterpene lactones and monoterpenoid from the fruits of Carpesium abrotanoides. Industrial Crops and Products. 2016;92:77–83. https://doi.org/10.1016/j.indcrop.2016.07.046
  79. 78. Reina M, Santana O, Domínguez DM, Villarroel L, Fajardo V, Rodríguez ML, et al. Defensive sesquiterpenes from Senecio candidans and S. magellanicus, and their structure activity relationships. Chemistry & Biodiversity. 2012;9(3):625–43. https://doi.org/10.1002/cbdv.201100236
  80. 79. Burgueño-Tapia E, González-Coloma A, Martín-Benito D, Joseph-Nathan P. Antifeedant and phytotoxic activity of cacalolides and eremophilanolides. Zeitschrift für Naturforschung C. 2007;62(5–6):362–6. https://doi.org/10.1515/znc-2007-5-608
  81. 80. Webster A, Manning P, Sproule J, Faraone N, Cutler G. Insecticidal and synergistic activity of two monoterpenes against diamondback moth (Lepidoptera: Plutellidae). The Canadian Entomologist. 2018;150(2):258–64. https://doi.org/10.4039/tce.2017.63
  82. 81. Rao AR, Rao PK, Jyotsna KP. Efficacy of certain natural insecticides against Citrus leaf miner, Phyllocnistis citrella Stainton as prophylactic and curative measures on Sathgudi Sweet Orange. Pest Management in Horticultural Ecosystems. 2015;21(1):11–5.
  83. 82. Rupasinghe H, Murr D, Paliyath G, DeEll J. Suppression of alpha-Farnesene synthesis in delicious' Apples by Aminoethoxyvinylglycine (AVG) and 1-Methylcyclopropene (1-MCP). Physiology and Molecular Biology of Plants. 2000;6:195–8.
  84. 83. Rosenfeld HJ, Aaby K, Lea P. Influence of temperature and plant density on sensory quality and volatile terpenoids of carrot (Daucus carota L.) root. Journal of the Science of Food and Agriculture. 2002;82(12):1384–90. https://doi.org/10.1002/jsfa.1200
  85. 84. de Abreu IN, Mazzafera P. Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiology and Biochemistry. 2005;43(3):241–8. https://doi.org/10.1016/j.plaphy.2005.01.020
  86. 85. Ghasemzadeh A, Jaafar HZ, Karimi E, Ashkani S. Changes in nutritional metabolites of young ginger (Zingiber officinale Roscoe) in response to elevated carbon dioxide. Molecules. 2014;19(10):16693–706. https://doi.org/10.3390/molecules191016693
  87. 86. Gao M, Li R, Dai S, Wu Y, Yi D. Diversity of Bacillus thuringiensis strains from soil in China and their pesticidal activities. Biological Control. 2008;44(3):380–8. https://doi.org/10.1016/j.biocontrol.2007.11.011
  88. 87. Brazaitytė A, Sakalauskienė S, Samuolienė G, Jankauskienė J, Viršilė A, Novičkovas A, et al. The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens. Food Chemistry. 2015;173:600–6. https://doi.org/10.1016/j.foodchem.2014.10.077
  89. 88. Takshak S, Agrawal S. Defence strategies adopted by the medicinal plant Coleus forskohlii against supplemental ultraviolet-B radiation: Augmentation of secondary metabolites and antioxidants. Plant Physiology and Biochemistry. 2015;97:124–38. https://doi.org/10.1016/j.plaphy.2015.09.018
  90. 89. Takshak S, Agrawal Sá. Secondary metabolites and phenylpropanoid pathway enzymes as influenced under supplemental ultraviolet-B radiation in Withania somnifera Dunal, an indigenous medicinal plant. Journal of Photochemistry and Photobiology B: Biology. 2014;140:332–43. https://doi.org/10.1016/j.jphotobiol.2014.08.011
  91. 90. Carletti P, Masi A, Wonisch A, Grill D, Tausz M, Ferretti M. Changes in antioxidant and pigment pool dimensions in UV-B irradiated maize seedlings. Environmental and Experimental Botany. 2003;50(2):149–57. https://doi.org/10.1016/S0098-8472(03)00020-0
  92. 91. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews. 1998;62(3):775–806. https://doi.org/10.1128/MMBR.62.3.775-806.1998
  93. 92. Loreto F, Fischbach RJ, Schnitzler JP, Ciccioli P, Brancaleoni E, Calfapietra C, et al. Monoterpene emission and monoterpene synthase activities in the Mediterranean evergreen oak Quercus ilex L. grown at elevated CO2 concentrations. Global Change Biology. 2001;7(6):709–17. https://doi.org/10.1046/j.1354-1013.2001.00442.x
  94. 93. Knudsen JT, Eriksson R, Gershenzon J, Ståhl B. Diversity and distribution of floral scent. The Botanical Review. 2006;72(1):1–20. https://doi.org/10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2
  95. 94. Chiriboga X, Campos-Herrera R, Jaffuel G, Röder G, Turlings TC. Diffusion of the maize root signal (E)-β-caryophyllene in soils of different textures and the effects on the migration of the entomopathogenic nematode Heterorhabditis megidis. Rhizosphere. 2017;3:53–9. https://doi.org/10.1016/j.rhisph.2016.12.006
  96. 95. Kollner TG, Held M, Lenk C, Hiltpold I, Turlings TC, Gershenzon J, et al. A maize (E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. The Plant Cell. 2008;20(2):482–94. https://doi.org/10.1105/tpc.107.051672
  97. 96. Hilgers F, Habash SS, Loeschcke A, Ackermann YS, Neumann S, Heck A, et al. Heterologous production of β-caryophyllene and evaluation of its activity against plant pathogenic fungi. Microorganisms. 2021;9(1):168. https://doi.org/10.3390/microorganisms9010168
  98. 97. Wang R, Peng S, Zeng R, Ding LW, Xu Z. Cloning, expression and wounding induction of β-caryophyllene synthase gene from Mikania micrantha HBK and allelopathic potential of β-caryophyllene. Allelopathy Journal. 2009;24(1):35–44.
  99. 98. Nguyen CT, Nguyen NH, Choi WS, Lee JH, Cheong JJ. Biosynthesis of essential oil compounds in Ocimum tenuiflorum is induced by abiotic stresses. Plant Biosystems. 2022;156(2):353–7. https://doi.org/10.1080/11263504.2020.1857870
  100. 99. Hansen U, Seufert G. Temperature and light dependence of β‐caryophyllene emission rates. Journal of Geophysical Research: Atmospheres. 2003;108(D24). https://doi.org/10.1029/2003JD003853
  101. 100. Morshedloo MR, Craker LE, Salami A, Nazeri V, Sang H, Maggi F. Effect of prolonged water stress on essential oil content, compositions and gene expression patterns of mono-and sesquiterpene synthesis in two oregano (Origanum vulgare L.) subspecies. Plant Physiology and Biochemistry. 2017;111:119–28. https://doi.org/10.1016/j.plaphy.2016.11.023

Downloads

Download data is not yet available.