Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Comparative evaluation of antimicrobial activity of Solanum torvum plant extracts against Ralstonia solanacerum

DOI
https://doi.org/10.14719/pst.8424
Submitted
21 March 2025
Published
15-12-2025

Abstract

Ralstonia solanacearum is a major bacterial pathogen that causes wilt disease, leading to yield losses of up to 90 % in solanaceous crops such tomato (Solanum lycopersicum), brinjal (S. melongena), potato (S. tuberosum), chili (Capsicum annuum). This study investigated the antibacterial potential of Solanum torvum (S. torvum) plant extracts against this pathogen. Extracts from the root, stem and fruit were evaluated for their antimicrobial activity. Gas chromatography-mass spectrometry (GC-MS) analysis of the root extract revealed several bioactive compounds, including Oxirane, Decon-1-ol, 1-Cyclo Azopropyl and Pentadecanoic acid, which confirm its antimicrobial effects. The minimum inhibitory concentrations (MIC) of the root and leaf extracts ranged from 7.5 mg/mL to 10 mg/mL, indicating strong antibacterial activity. The root extract also demonstrated a lethal time (LT50) of 6.6 hr, confirming its effectiveness against R. solanacearum. Furthermore, the extract exhibited biofilm-inhibitory activity, with an IC50 value of 37.03 mg/mL, suggesting its ability to prevent bacterial colonization and biofilm formation.

References

  1. 1. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol. 2012;13(6):614–29. https://doi.org/10.1111/j.1364-3703.2012.00804.x
  2. 2. Lampropoulos P, Gkentzi D, Tzifas S, Kapnisi G, Karatza A, Kolonitsiou F, et al. Ralstonia mannitolilytica, an unusual pathogen in the neonatal intensive care unit: a case of neonatal sepsis and literature review. Infect Disord Drug Targets. 2021;21(2):168–72. https://doi.org/10.2174/1871526520666200330163504
  3. 3. Álvarez B, López MM, Biosca EG. Biocontrol of the major plant pathogen Ralstonia solanacearum in irrigation water and host plants by novel waterborne lytic bacteriophages. Front Microbiol. 2019;10:2813. https://doi.org/10.3389/fmicb.2019.02813
  4. 4. Cai Q, Zhou G, Ahmed W, Cao Y, Zhao M, Li Z, et al. Study on the relationship between bacterial wilt and rhizospheric microbial diversity of flue-cured tobacco cultivars. Eur J Plant Pathol. 2021;160(2):265–76. https://doi.org/10.1007/s10658-021-02237-4
  5. 5. Cook D, Sequeira L. Strain differentiation of Pseudomonas solanacearum by molecular genetic methods. ACIAR Proc. 1993;96–6.
  6. 6. Shen F, Yin W, Song S, Zhang Z, Ye P, Zhang Y, et al. Ralstonia solanacearum promotes pathogenicity by utilizing L-glutamic acid from host plants. Mol Plant Pathol. 2020;21(8):1099–110. https://doi.org/10.1111/mpp.12963
  7. 7. Mondal B, Bhattacharya I, Khatua DC. Crop and weed host of Ralstonia solanacearum in West Bengal. J Crop Weed. 2011;7(2):195–9.
  8. 8. Genin S, Denny TP. Pathogenomics of the Ralstonia solanacearum species complex. Annu Rev Phytopathol. 2012;50(1):67–89. https://doi.org/10.1146/annurev-phyto-081211-173000
  9. 9. Yao J, Allen C. The plant pathogen Ralstonia solanacearum needs aerotaxis for normal biofilm formation and interactions with its tomato host. J Bacteriol. 2007;189(17):6415–24. https://doi.org/10.1128/JB.00398-07
  10. 10. Mori Y, Inoue K, Ikeda K, Nakayashiki H, Higashimoto C, Ohnishi K, et al. The vascular plant-pathogenic bacterium Ralstonia solanacearum produces biofilms required for its virulence on the surfaces of tomato cells adjacent to intercellular spaces. Mol Plant Pathol. 2016;17(6):890–902. https://doi.org/10.1111/mpp.12335
  11. 11. Vasse J, Frey P, Trigalet A. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Mol Plant Microbe Interact. 1995;8(2):241–51. https://doi.org/10.1094/MPMI-8-0241
  12. 12. Agrios GN. Plant pathology. Elsevier; 2005.
  13. 13. Flavier AB, Clough SJ, Schell MA, Denny TP. Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol Microbiol. 1997;26(2):251–9. https://doi.org/10.1046/j.1365-2958.1997.5661945.x
  14. 14. Yan J, Li P, Wang X, Zhu M, Shi H, Yu G, et al. RasI/R quorum sensing system controls the virulence of Ralstonia solanacearum strain EP1. Appl Environ Microbiol. 2022;88(15):e00325–2. https://doi.org/10.1128/aem.00325-22
  15. 15. Ganova-Raeva LG, Flavier AB, Denny TP. Pseudomonas solanacearum produces a homoserine-like signal molecule. Phytopathology. 1994;84:840–54.
  16. 16. Pandey AK, Shashank Kumar SK. Perspective on plant products as antimicrobial agents: a review. Pharmacologia. 2013;4:469–80. https://doi.org/10.5567/pharmacologia.2013.469.480
  17. 17. Romha G, Admasu B, Hiwot Gebrekidan T, Aleme H, Gebru G. Antibacterial activities of five medicinal plants in Ethiopia against some human and animal pathogens. Evid Based Complement Altern Med. 2018;2018:2950758. https://doi.org/10.1155/2018/2950758
  18. 18. Persson T, Hansen TH, Rasmussen TB, Skinderso ME, Givskov M, Nielsen J. Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Organic Biomol Chem. 2005;3(2):253–62. https://doi.org/10.1039/B415761C
  19. 19. Xie Y, Yang W, Tang F, Chen X, Ren L. Antibacterial activities of flavonoids: structure–activity relationship and mechanism. Curr Med Chem. 2015;22:132–49. https://doi.org/10.2174/0929867321666140916113443
  20. 20. Vaclavýkova R, Kondrova E, Ehrlichova DM, Boumendjel A, Kovar J, Stopka P. The effect of flavonoid derivatives on doxorubicin transport and metabolism. Bioorg Med Chem. 2008;16:2034–42. https://doi.org/10.1016/j.bmc.2007.10.093
  21. 21. Brobbey AA, Quartey AK, Otuo-Serebour S, Ayensu I. Determination of the phytochemical constituents, antimicrobial and antitussive activities of the leaves of Solanum torvum Swartz. WJPPS. 2016;5(01):1363–74.
  22. 22. Lu Y, Luo J, Huang X, Kong L. Four new steroidal glycosides from Solanum torvum and their cytotoxic activities. Steroids. 2009;74(1):95–101. https://doi.org/10.1016/j.steroids.2008.09.011
  23. 23. Arwiyanto T, Lwin K, Maryudani Y, Purwantoro A. Evaluation of local Solanum torvum as a rootstock to control Ralstonia solanacearum in Indonesia. Acta Hortic. 2015;1086:101–6. https://doi.org/10.17660/ActaHortic.2015.1086.11
  24. 24. Bari MA, Islam W, Khan AR, Mandal A. Antibacterial and antifungal activity of Solanum torvum (Solanaceae). Int J Agric Biol. 2010;12(3):386–90.
  25. 25. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016;6(2):71–9. https://doi.org/10.1016/j.jpha.2015.11.005
  26. 26. Wang H, Cheng H, Wang F, Wei D, Wang X. An improved MTT reduction assay for evaluating the viability of Escherichia coli cells. J Microbiol Methods. 2010;82(3):330–3. https://doi.org/10.1016/j.mimet.2010.06.014
  27. 27. Vaara M, Vaara T. Outer membrane permeability barrier disruption by polymyxin in polymyxin-susceptible and -resistant Salmonella typhimurium. Antimicrob Agents Chemother. 1981;19(4):578–83. https://doi.org/10.1128/AAC.19.4.578
  28. 28. Zeng X, Tang W, Ye G, Ouyang T, Tian L, Ni Y, et al. Studies on disinfection mechanism of electrolyzed oxidizing water on E. coli and Staphylococcus aureus. J Food Sci. 2010;75(5):M253–60. https://doi.org/10.1111/j.1750-3841.2010.01649.x
  29. 29. Waterborg JH. The Lowry method for protein quantitation. In: Walker JM, editor. The protein protocols handbook. Totowa (NJ): Humana Press; 2009. p. 7–10. https://doi.org/10.1007/978-1-59745-198-7_2
  30. 30. Wu CC, Lin CT, Wu CY, Peng WS, Lee MJ, Tsai YC. Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation. Mol Oral Microbiol. 2015;30(1):16–26. https://doi.org/10.1111/omi.12063
  31. 31. Herzi N, Bouajila J, Camy S, Romdhane M, Condoret JS. Comparison of different methods for extraction from Tetraclinis articulata: yield, chemical composition and antioxidant activity. Food Chem. 2013;141(4):3537–45. https://doi.org/10.1016/j.foodchem.2013.06.065
  32. 32. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63. https://doi.org/10.1016/0022-1759(83)90303-4
  33. 33. Van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. In: Cree I, editor. Cancer cell culture: methods and protocols. Humana Press; 2011. p. 237–45. https://doi.org/10.1007/978-1-61779-080-5_20
  34. 34. Hall MD, Amjadi S, Zhang M, Beale PJ, Hambley TW. The mechanism of action of platinum (IV) complexes in ovarian cancer cell lines. J Inorg Biochem. 2004;98(10):1614–24. https://doi.org/10.1016/j.jinorgbio.2004.05.017
  35. 35. Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer. 2011;11(6):393–410. https://doi.org/10.1038/nrc3064
  36. 36. Chen X, Shang F, Meng Y, Li L, Cui Y, Zhang M, et al. Ethanol extract of Sanguisorba officinalis L. inhibits biofilm formation of methicillin-resistant Staphylococcus aureus in an ICA-dependent manner. J Dairy Sci. 2015;98(12):8486–91. ttps://doi.org/10.3168/jds.2015-9899
  37. 37. Ivanov M, Gašić U, Stojković D, Kostić M, Mišić D, Soković M. New evidence for Artemisia absinthium L. application in gastrointestinal ailments: ethnopharmacology, antimicrobial capacity, cytotoxicity, and phenolic profile. Evid Based Complement Alternat Med. 2021;2021(1):9961089. https://doi.org/10.1155/2021/9961089
  38. 38. Barfour AF, Mensah AY, Asante-Kwatia E, Danquah CA, Anokwah D, Adjei S, et al. Antibacterial, antibiofilm, and efflux pump inhibitory properties of the crude extract and fractions from Acacia macrostachya stem bark. Sci World J. 2021;2021(1):5381993. https://doi.org/10.1155/2021/5381993
  39. 39. Da Cruz Nizer WS, Ferraz AC, Moraes TDFS, Lima WG, Dos Santos JP, Duarte LP, et al. Pristimerin isolated from Salacia crassifolia roots as a potential antibacterial agent against Staphylococcus aureus. J Ethnopharmacol. 2021;266:113423. https://doi.org/10.1016/j.jep.2020.113423
  40. 40. Sribalan R, Banuppriya G, Kirubavathi M, Padmini V. Synthesis, biological evaluation and in silico studies of tetrazole-heterocycle hybrids. J Mol Struct. 2019;1175:577–86. https://doi.org/10.1016/j.molstruc.2018.07.114
  41. 41. Gao F, Xiao J, Huang G. Current scenario of tetrazole hybrids for antibacterial activity. Eur J Med Chem. 2019;184:111744. https://doi.org/10.1016/j.ejmech.2019.111744
  42. 42. Ostrovskii VA, Trifonov RE, Popova EA. Medicinal chemistry of tetrazoles. Russian Chem Bull. 2012;61(4):768–80. https://doi.org/10.1007/s11172-012-0108-4
  43. 43. Popova EA, Protas AV, Trifonov RE. Tetrazole derivatives as promising anticancer agents. Anti-cancer Agents Med Chem. 2017;17(14):1856–68. https://doi.org/10.2174/1871520617666170327143148
  44. 44. Hou Y, Shang C, Wang H, Yun J. Isatin–azole hybrids and their anticancer activities. Arch Pharm. 2020;353(1):1900272. https://doi.org/10.1002/ardp.201900272
  45. 45. Sammer UF, Völksch B, Möllmann U, Schmidtke M, Spiteller P, Spiteller M, et al. 2-Amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine, an effective peptide antibiotic from the epiphyte Pantoea agglomerans 48b/90. Appl Environ Microbiol. 2009;75(24):7710–7. https://doi.org/10.1128/AEM.01244-09
  46. 46. Fung HB, Kirschenbaum HL, Ojofeitimi BO. Linezolid: an oxazolidinone antimicrobial agent. Clin Ther. 2001;23(3):356–91. https://doi.org/10.1016/S0149-2918(01)80043-6
  47. 47. Stevens DL, Bisno AL, Chambers HF, Dellinger EP, Goldstein EJ, Gorbach SL, et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis. 2014;59(2):e10–52. https://doi.org/10.1093/cid/ciu296
  48. 48. Narayanan N, Rai R, Vaidya P, Desai A, Bhowmick T, Weinstein MP. Comparison of linezolid and daptomycin for the treatment of vancomycin-resistant enterococcal bacteremia. Ther Adv Infect Dis. 2019;6:2049936119828964. https://doi.org/10.1177/2049936119828964.
  49. 49. Akpuaka A, Ekwenchi MM, Dashak DA, Dildar A. Biological activities of characterized isolates of n-hexane extract of Azadirachta indica A. Juss leaves. Nat Sci. 2013;11(5):141–7.
  50. 50. Venn-Watson S, Schork NJ. Pentadecanoic acid (C15:0), an essential fatty acid, shares clinically relevant cell-based activities with leading longevity-enhancing compounds. Nutrients. 2023;15(21):4607. https://doi.org/10.3390/nu15214607
  51. 51. Hameed IH, Hamza LF, Kamal SA. Analysis of bioactive chemical compounds of Aspergillus niger by using gas chromatography–mass spectrometry and fourier-transform infrared spectroscopy. J Pharmacognosy Phytother. 2015;7(8):132–63. https://doi.org/10.5897/JPP2015.0354
  52. 52. Ala-Jaakkola R, Laitila A, Ouwehand AC, Lehtoranta L. Role of D-mannose in urinary tract infections – a narrative review. Nutr J. 2022;21(1):18. https://doi.org/10.1186/s12937-022-00769-x

Downloads

Download data is not yet available.