Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

A comprehensive review on role of recessive alleles in the genetic improvement of plantation crops

DOI
https://doi.org/10.14719/pst.8427
Submitted
21 March 2025
Published
13-07-2025 — Updated on 21-07-2025
Versions

Abstract

Recessive alleles play a significant role in the genetic improvement of plantation crops such as examples: oilseed (coconut, oil palm), beverage (coffee, tea, cocoa), nut (arecanut), etc. These alleles contribute to agronomically important including disease resistance, stress tolerance, yield enhancement and quality improvement. Unlike dominant alleles, recessive traits require a homozygous state for expression, making their deployment in breeding programs more challenging, yet often rewarding due to their unique genetic advantages. Recent advancements in marker-assisted selection (MAS), genomic sequencing and genome editing (CRISPR-Cas9) have facilitated the identification and application of beneficial recessive alleles in crop breeding. Examples include low-caffeine coffee, coconut varieties enriched in lauric acid and high-yield oil palms. Additionally, recessive mutations contribute to pathogen resistance (e.g., lethal yellowing in coconut, leaf rust in coffee and Phytophthora resistance in cocoa). Despite their benefits, challenges such as low allele frequency, inbreeding depression and linkage with undesirable traits require strategic breeding approaches. Advances in genomics and biotechnological tools are accelerating the deployment of recessive alleles in commercial cultivars, ensuring sustainable and climate-resilient crop production. This review underscores the pivotal role of recessive alleles in plantation crop breeding and emphasizes the transformative potential of modern genomics and biotechnology to harness these traits for sustainable agriculture.

References

  1. 1. Mattaini K. Mendelian genetics. In: Introduction to molecular and cell biology. Roger Williams University; 2020.
  2. 2. Acquaah G. Conventional plant breeding principles and techniques. In: Advances in plant breeding strategies: breeding, biotechnology and molecular tools. Springer, Cham; 2015. p. 115-58. https://doi.org/10.1007/978-3-319-22521-0_5
  3. 3. Boopathi NM. Genetic mapping and marker assisted selection. Vol. 10. Springer; 2013. p. 978-81. https://doi.org/10.1007/978-81-322-0958-4
  4. 4. Rajesh M, Sabana A, Rachana K, Rahman S, Jerard B, Karun A. Genetic relationship and diversity among coconut (Cocos nucifera L.) accessions revealed through SCoT analysis. 3 Biotech. 2015;5:999-1006. https://doi.org/10.1007/s13205-015-0304-7
  5. 5. Arhin L, Abdullah SnA, Jaafar JN, Izan Ramlee S. Conventional and modern breeding technologies for improving dwarf coconut cultivars: a review. The Journal of Horticultural Science and Biotechnology. 2023;98(5):551-62. https://doi.org/10.1080/14620316.2023.2195863
  6. 6. Jerard B, Niral V, Rajesh M. Breeding strategies. In: The coconut genome. Springer, Cham; 2021. p. 47-76. https://doi.org/10.1007/978-3-030-76649-8_4
  7. 7. Geleta M, Herrera I, Monzon A, Bryngelsson T. Genetic diversity of arabica coffee (Coffea arabica L.) in Nicaragua as estimated by simple sequence repeat markers. The Scientific World Journal. 2012;2012(1):939820. https://doi.org/10.1100/2012/939820
  8. 8. Van der Vossen H, Walyaro D. Breeding for resistance to coffee berry disease in Coffea arabica L. II. Inheritance of the resistance. Euphytica. 1980;29:777-91. https://doi.org/10.1007/BF00023225
  9. 9. Silva DNPR. Phylogenomic and population genomic insights on the evolutionary history of coffee leaf rust within the rust fungi. Universidade de Lisboa, Portugal; 2018.
  10. 10. Maghuly F, Jankowicz-Cieslak J, Bado S. Improving coffee species for pathogen resistance. CABI Reviews. 2020. https://doi.org/10.1079/PAVSNNR202015009
  11. 11. Melese YY, Kolech SA. Coffee (Coffea arabica L.): methods, objectives, and future strategies of breeding in Ethiopia. Sustainability. 2021;13(19):10814. https://doi.org/10.3390/su131910814
  12. 12. De Kochko A, Akaffou S, Andrade AC, Campa C, Crouzillat D, Guyot R, et al. Advances in Coffea genomics. In: Advances in botanical research. Vol. 53. Elsevier; 2010. p. 23-63. https://doi.org/10.1016/S0065-2296(10)53002-7
  13. 13. Cheserek JJ. Performance of interspecific arabusta coffee hybrids for yield, cup quality, and disease resistance: University of Nairobi; 2020.
  14. 14. Parker TA, Gallegos JA, Beaver J, Brick M, Brown JK, Cichy K, et al. Genetic resources and breeding priorities in Phaseolus beans: Vulnerability, resilience, and future challenges. Plant Breeding Reviews. 2022;46:289-420. https://doi.org/10.1002/9781119874157.ch6
  15. 15. Carvalho A, Eskes AB, Castillo-Z MJ, Sreenivasan M, Echeverri JH, Fernandez CE, et al. Breeding programs. In: Coffee rust: epidemiology, resistance and management. CRC Press; 2019. p. 293-336. https://doi.org/10.1201/9781351070775-7
  16. 16. Wang Y, Samarina L, Mallano AI, Tong W, Xia E. Recent progress and perspectives on physiological and molecular mechanisms underlying cold tolerance of tea plants. Frontiers in Plant Science. 2023;14:1145609. https://doi.org/10.3389/fpls.2023.1145609
  17. 17. Samarina L, Matskiv A, Simonyan T, Koninskaya N, Malyarovskaya V, Gvasaliya M, et al. Biochemical and genetic responses of tea (Camellia sinensis (L.) Kuntze) microplants under mannitol-induced osmotic stress in vitro. Plants. 2020;9(12):1795. https://doi.org/10.3390/plants9121795
  18. 18. Wang L, Yao L, Hao X, Li N, Qian W, Yue C, et al. Tea plant sweet transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis. Plant Molecular Biology. 2018;96:577-92. https://doi.org/10.1007/s11103-018-0716-y
  19. 19. Wang P, Yu J, Jin S, Chen S, Yue C, Wang W, et al. Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Horticulture Research. 2021;8:107. https://doi.org/10.1038/s41438-021-00542-x
  20. 20. Qiao D, Mi X, Xie H, Zhu J, Liu S, Wei C. Alternative splicing regulates tea aroma quality formation during withering of fresh leaves. Scientia Horticulturae. 2024;329:112989. https://doi.org/10.1016/j.scienta.2024.112989
  21. 21. Chen L, Apostolides Z, Chen Z-M. Global tea breeding: acheivements challenges and perspective. Springer Berlin, Heidelberg; 2013. https://doi.org/10.1007/978-3-642-31878-8
  22. 22. Zhang L, Cao Q-Q, Granato D, Xu Y-Q, Ho C-T. Association between chemistry and taste of tea: A review. Trends in Food Science & Technology. 2020;101:139-49. https://doi.org/10.1016/j.tifs.2020.05.015
  23. 23. Takeda Y. Differences in caffeine and tannin contents between tea cultivars, and application to tea breeding. 1994;28:117-23.
  24. 24. Ye J-H, Ye Y, Yin J-F, Jin J, Liang Y-R, Liu R-Y, et al. Bitterness and astringency of tea leaves and products: Formation mechanism and reducing strategies. Trends in Food Science & Technology. 2022;123:130-43. https://doi.org/10.1016/j.tifs.2022.02.031
  25. 25. Pandey AK, Sinniah GD, Babu A, Tanti A. How the global tea industry copes with fungal diseases–challenges and opportunities. Plant Disease. 2021;105(7):1868-79. https://doi.org/10.1094/PDIS-09-20-1945-FE
  26. 26. Chen L, Apostolides Z, Chen Z-M, Chen Z-M, Sun X-L, Dong W-X. Genetics and chemistry of the resistance of tea plant to pests. In: Global tea breeding: achievements, challenges and perspectives. Springer, Berlin, Heidelberg; 2012. p. 343-60. https://doi.org/10.1007/978-3-642-31878-8_13
  27. 27. Lee SH, Lin SR, Chen SF. Identification of tea foliar diseases and pest damage under practical field conditions using a convolutional neural network. Plant Pathology. 2020;69(9):1731-9. https://doi.org/10.1111/ppa.13251
  28. 28. Karunarathna K, Mewan K, Weerasena O, Perera S, Edirisinghe E. A functional molecular marker for detecting blister blight disease resistance in tea (Camellia sinensis L.). Plant Cell Reports. 2021;40:351-9. https://doi.org/10.1007/s00299-020-02637-6
  29. 29. Usman M, Ziaf K, Ye Z. Breeding and crop improvement. In: Khan AS, Ziaf K, editors. Breeding of horticultural crops. University of Agriculture, Faisalabad; 2017. p. 25-65.
  30. 30. Silva D, Araújo I, Branco S, Aguilar-Vildoso C, Lopes U, Marelli J, et al. Analysis of resistance to witches’ broom disease (Moniliophthora perniciosa) in flower cushions of Theobroma cacao in a segregating population. Plant Pathology. 2014;63(6):1264-71. https://doi.org/10.1111/ppa.12204
  31. 31. Minimol JS, Suma B, Mary A, Shija TK, Jose S, Plappallil SK. Evaluating black pod resistance in cocoa (Theobroma cacao L.) and its relationship with phenotypical and biochemical characteristics. Beverage Plant Research. 2024;4(1):e038. https://doi.org/10.48130/bpr-0024-0028
  32. 32. Risterucci A-M, Paulin D, Ducamp M, N'Goran JA, Lanaud C. Identification of QTLs related to cocoa resistance to three species of Phytophthora. Theoretical and Applied Genetics. 2003;108:168-74. https://doi.org/10.1007/s00122-003-1408-8
  33. 33. Rêgo APB, Mora-Ocampo IY, Corrêa RX. Interactions of different species of Phytophthora with cacao induce genetic, biochemical, and morphological plant alterations. Microorganisms. 2003;11(5):1172. https://doi.org/10.3390/microorganisms11051172
  34. 34. Colonges K, Jimenez J-C, Saltos A, Seguine E, Loor Solorzano RG, Fouet O, et al. Two main biosynthesis pathways involved in the synthesis of the floral aroma of the Nacional cocoa variety. Frontiers in Plant Science. 2021;12:681979. https://doi.org/10.3389/fpls.2021.681979
  35. 35. Mustiga GM, Morrissey J, Stack JC, DuVal A, Royaert S, Jansen J, et al. Identification of climate and genetic factors that control fat content and fatty acid composition of Theobroma cacao L. beans. Frontiers in Plant Science. 2019;10:1159. https://doi.org/10.3389/fpls.2019.01159
  36. 36. Manga JN, Bep GMA, Akoa SP, Mewouo HA, Ondobo ML, Mvondo EA, et al. Expression of Tc-MYBPA gene involved in the regulation of the biosynthesis of proanthocyanidins in cacao beans (Theobroma cacao L.). Journal of Plant Biochemistry and Biotechnology. 2024;33(4):615-27. https://doi.org/10.1007/s13562-024-00921-0
  37. 37. Oldfield ML. The value of conserving genetic resources. US Department of the Interior, National Park Service; 1984.
  38. 38. Hollender CA, Dardick C. Molecular basis of angiosperm tree architecture. New Phytologist. 2015;206(2):541-56. https://doi.org/10.1111/nph.13204
  39. 39. Hajihashemi S. Stomatal regulation as a drought-tolerance mechanism. In: Molecular plant abiotic stress: biology and biotechnology. Wiley; 2019. p. 45-64. https://doi.org/10.1002/9781119463665.ch3
  40. 40. Decloquement J, Ramos-Sobrinho R, Elias SG, Britto DS, Puig AS, Reis A, et al. Phytophthora theobromicola sp. nov.: a new species causing black pod disease on cacao in Brazil. Frontiers in Microbiology. 2021;12:537399. https://doi.org/10.3389/fmicb.2021.537399
  41. 41. La V H. Genome-Wide Identification and analysis of heat shock protein 70 family in Theobroma cacao. Pakistan Journal of Biological Sciences: PJBS. 2022;25(7):608-18. https://doi.org/10.3923/pjbs.2022.608.618
  42. 42. Baby J, Minimol J, Santhoshkumar A, Joseph J, Abd-ElGawad AM, Ullah F. Identification and development of drought-tolerant cocoa hybrids: physiological insights for enhanced water use efficiency under water stress conditions. BMC Plant Biology. 2025;25(1):501. https://doi.org/10.1186/s12870-025-06448-3
  43. 43. Osorio Zambrano MA, Castillo DA, Rodriguez Perez L, Terán W. Cacao (Theobroma cacao L.) response to water stress: physiological characterization and antioxidant gene expression profiling in commercial clones. Frontiers in Plant Science. 2021;12:700855. https://doi.org/10.3389/fpls.2021.700855
  44. 44. Araújo MS, Chaves SF, Pereira GR, Guimarães MH, Alves AK, Dias LAS, et al. Multi-trait selection for nutritional and physiological quality of cacao genotypes in irrigated and non-irrigated environments. Scientific Reports. 2024;14(1):6368. https://doi.org/10.1038/s41598-024-56556-7
  45. 45. Lanaud C, Flament M-H, Nyassé S, Risterucci A-M, Fargeas D, Kébé IS, et al. Synthesis of studies on genetic basis of cocoa resistance to Phytophthora using molecular markers. Cocoa Producers' Alliance; 2001.
  46. 46. Fernandes LdS, Correa FM, Ingram KT, de Almeida A-AF, Royaert S. QTL mapping and identification of SNP-haplotypes affecting yield components of Theobroma cacao L. Horticulture Research. 2020;7:26. https://doi.org/10.1038/s41438-020-0250-3
  47. 47. Singh R, Low ETL, Ooi LCL, Ong-Abdullah M, Ting NC, Nookiah R, et al. Variation for heterodimerization and nuclear localization among known and novel oil palm SHELL alleles. New Phytologist. 2020;226(2):426-40. https://doi.org/10.1111/nph.16387
  48. 48. Montoya C, Cochard B, Flori A, Cros D, Lopes R, Cuellar T, et al. Genetic architecture of palm oil fatty acid composition in cultivated oil palm (Elaeis guineensis Jacq.) compared to its wild relative E. oleifera (HBK) Cortés. PloS One. 2014;9(5):e95412. https://doi.org/10.1371/journal.pone.0095412
  49. 49. Bharudin I, Ab Wahab AFF, Abd Samad MA, Xin Yie N, Zairun MA, Abu Bakar FD, et al. Review update on the life cycle, plant–microbe interaction, genomics, detection and control strategies of the oil palm pathogen Ganoderma boninense. Biology. 2022;11(2):251. https://doi.org/10.3390/biology11020251
  50. 50. Soh A, Wong G, Hor T, Tan C, Chew P. Oil palm genetic improvement. Plant Breeding Reviews. 2003;22:165-220. https://doi.org/10.1002/9780470650202.ch4
  51. 51. Rethinam P, Murugesan P. Global perspective of germplasm and breeding for seed production in oil palm. International Journal of Oil Palm. 2018;10:17-34.
  52. 52. Corley RHV, Tinker PB. The oil palm: John Wiley & Sons; 2015. https://doi.org/10.1002/9781118953297
  53. 53. Forster BP, Sitepu B, Setiawati U, Kelanaputra ES, Nur F, Rusfiandi H, et al. Oil palm (Elaeis guineensis). In: Genetic improvement of tropical crops. Springer, Cham; 2017. p. 241-90. https://doi.org/10.1007/978-3-319-59819-2_8
  54. 54. Thomas RJ, Shareefa M, Harsha H, Karun A. Biochemical characterization of pink husked coconut types. Indian Society of Plantation Crops. 2021;49:72-6. https://doi.org/10.25081/jpc.2021.v49.i1.7062
  55. 55. Oliveira MB, Valentim IB, Santos TR, Xavier JA, Ferro JN, Barreto EO, et al. Photoprotective and antiglycation activities of non-toxic Cocos nucifera Linn. (Arecaceae) husk fiber ethanol extract and its phenol chemical composition. Industrial Crops and Products. 2021;162:113246. https://doi.org/10.1016/j.indcrop.2021.113246
  56. 56. Perera L, Russell J, Provan J, Powell W. Studying genetic relationships among coconut varieties/populations using microsatellite markers. Euphytica. 2003;132:121-8. https://doi.org/10.1023/A:1024696303261
  57. 57. Arunachalam V, Rajesh M. Breeding of coconut palm (Cocos nucifera L.). CABI Reviews. 2008:1-12. https://doi.org/10.1079/PAVSNNR20083053
  58. 58. Zizumbo-Villarreal D, Ruiz-Rodriguez M, Harries H, Colunga-GarcíaMarín P. Population genetics, lethal yellowing disease, and relationships among Mexican and imported coconut ecotypes. Crop Science. 2006;46(6):2509-16. https://doi.org/10.2135/cropsci2005.12-0462
  59. 59. Nair RV, Jerard B, Thomas RJ. Coconut breeding in India. In: Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Springer, Cham.; 2016. p. 257-79. https://doi.org/10.1007/978-3-319-22518-0_7
  60. 60. Vinod K. Stress in plantation crops: adaptation and management. In: Crop stress and its management: perspectives and strategies: Springer; 2011. p. 45-137. https://doi.org/10.1007/978-94-007-2220-0_3
  61. 61. Arunachalam V, Rajesh M. Coconut genetic diversity, conservation and utilization. In: Biodiversity and conservation of woody plants. Springer, Cham.; 2017. p. 3-36. https://doi.org/10.1007/978-3-319-66426-2_1
  62. 62. Baudouin L, Lebrun P, Rognon F, Ritter E. Use of molecular markers for coconut improvement: Status and prospects. Coconut Genetic Resources. 2005:268.
  63. 63. Yousefi K, Abdullah SNA, Hatta MAM, Ling KL. Genomics and transcriptomics reveal genetic contribution to population diversity and specific traits in coconut. Plants. 2023;12(9):1913. https://doi.org/10.3390/plants12091913
  64. 64. Herran A, Estioko L, Becker D, Rodriguez M, Rohde W, Ritter E. Linkage mapping and QTL analysis in coconut (Cocos nucifera L.). Theoretical and Applied Genetics. 2000;101:292-300. https://doi.org/10.1007/s001220051482
  65. 65. Baudouin L, Lebrun P, Konan J-L, Ritter E, Berger A, Billotte N. QTL analysis of fruit components in the progeny of a Rennell Island Tall coconut (Cocos nucifera L.) individual. Theoretical and Applied Genetics. 2006;112:258-68. https://doi.org/10.1007/s00122-005-0123-z
  66. 66. Tang C, Yang M, Fang Y, Luo Y, Gao S, Xiao X, et al. The rubber tree genome reveals new insights into rubber production and species adaptation. Nature Plants. 2016;2(6):1-10. https://doi.org/10.1038/nplants.2016.73
  67. 67. He H, Wang J, Meng Z, Dijkwel PP, Du P, Shi S, et al. Genome-wide analysis of the SRPP/REF gene family in Taraxacum kok-saghyz provides insights into its expression patterns in response to ethylene and methyl jasmonate treatments. International Journal of Molecular Sciences. 2024;25(13):6864. https://doi.org/10.3390/ijms25136864
  68. 68. Men X, Wang F, Chen G-Q, Zhang H-B, Xian M. Biosynthesis of natural rubber: current state and perspectives. International Journal of Molecular Sciences. 2018;20(1):50. https://doi.org/10.3390/ijms20010050
  69. 69. Clément-Demange A, Priyadarshan P, Hoa TT, Venkatachalam P. Hevea rubber breeding and genetics. Plant Breeding Reviews. 2007;29:177. https://doi.org/10.1002/9780470168035.ch4
  70. 70. Priyadarshan P. Breeding Hevea brasiliensis for environmental constraints. Advances in Agronomy. 2003;79:352-400. https://doi.org/10.1016/S0065-2113(02)79007-X
  71. 71. Yadav V, Wang Z, Wei C, Amo A, Ahmed B, Yang X, et al. Phenylpropanoid pathway engineering: An emerging approach towards plant defense. Pathogens. 2020;9(4):312. https://doi.org/10.3390/pathogens9040312
  72. 72. Rungwattana K, Kasemsap P, Phumichai T, Kanpanon N, Rattanawong R, Hietz P. Trait evolution in tropical rubber (Hevea brasiliensis) trees is related to dry season intensity. Functional Ecology. 2018;32(12):2638-51. https://doi.org/10.1111/1365-2435.13203
  73. 73. Wang L-f. Physiological and molecular responses to drought stress in rubber tree (Hevea brasiliensis Muell. Arg.). Plant Physiology and Biochemistry. 2014;83:243-9. https://doi.org/10.1016/j.plaphy.2014.08.012
  74. 74. Li Y, Yu W, Chen Y, Yang S, Wu S, Chao J, et al. Genome-wide identification and characterization of heat-shock transcription factors in rubber tree. Forests. 2019;10(12):1157. https://doi.org/10.3390/f10121157
  75. 75. Li Y, Quan C, Yang S, Wu S, Shi M, Wang J, et al. Functional identification of ICE transcription factors in rubber tree. Forests. 2022;13(1):52. https://doi.org/10.3390/f13010052
  76. 76. Priyadarshan P. Biology of Hevea rubber. Springer; 2011. https://doi.org/10.1079/9781845936662.0000
  77. 77. Kumar DK, Lakshmana D, Nagaraja N, Nadukeri S, Ganapathi M. Genetic variability and correlation for nut and yield characters in arecanut (Areca catechu L.) germplasm. Electronic Journal of Plant Breeding. 2021;12(4):1170-7. https://doi.org/10.37992/2021.1204.161
  78. 78. Ananda K, Chowdappa P. Improved varieties to make India self-sufficient in arecanut. Indian Horticulture. 2014;59(6).
  79. 79. Gupta AK, Tulsyan S, Thakur N, Sharma V, Sinha DN, Mehrotra R. Chemistry, metabolism and pharmacology of carcinogenic alkaloids present in areca nut and factors affecting their concentration. Regulatory Toxicology and Pharmacology. 2020;110:104548. https://doi.org/10.1016/j.yrtph.2019.104548
  80. 80. Lokesh M, Patil S, Palakshappa M, Gurumurthy S. Role of systemic fungicide metalaxyl mancozeb in management of Koleroga (Phytophthora meadii Mc Rae) of arecanut (Areca catechu L.) in Central Western ghats of Karnataka. Asian Journal of BioScience. 2014;9:131-3.
  81. 81. Balanagouda P, Vinayaka H, Maheswarappa H, Narayanaswamy H. Phytophthora diseases of arecanut in India: Prior findings, present status and future prospects. Indian Phytopathology. 2021;74(3):561-72. https://doi.org/10.1007/s42360-021-00382-8
  82. 82. Nampoothiri K, Ponnamma K, Chowdappa P. Arecanut yellow leaf disease. CPCRI, Kasaragod, India; 2000.
  83. 83. Kumar SN, Rajagopal V, Kasturi Bai K. Coconut and areca nut. In: Abiotic stress physiology of horticultural crops. Springer, New Delhi; 2016. p. 269-305. https://doi.org/10.1007/978-81-322-2725-0_15
  84. 84. Hebbar K, Ramesh S. Climate change: Response, adaptation strategies and mitigation potential of Coconut, Arecanut and Cocoa. Indian Horticulture. 2022;67(6):66-9.
  85. 85. Bhat R, Sujatha S, Bhavishya, Priya U, Gupta A, Uchoi A. Arecanut (Areca catechu L.). Soil health management for plantation crops: recent advances and new paradigms. Springer; 2024. p. 177-206. https://doi.org/10.1007/978-981-97-0092-9_4
  86. 86. De L, De T. Palmyra palm-a lesser-known fruit for profitability and nutritional security for marginal and small farmers. Vigyan Varta. 2024;5(10):194-7.
  87. 87. Campmany Jiménez J, Romanowska I, Raja R, Seland EH. Food security in Roman Palmyra (Syria) in light of paleoclimatological evidence and its historical implications. PLoS One. 2022;17(9):e0273241. https://doi.org/10.1371/journal.pone.0273241
  88. 88. Jothilakshmi K, Roja T, Gayathry G, Selvi J, Kavithasree G, Tamilselvi E, et al. Formulation of flavored desserts fortified with tender palmyra (Ice apple) (Borassus flabellifer). International Journal of Applied Homescience. 2014;11(7,8):314-9.
  89. 89. Rao MCS, Swami DV, Ashok P, Nanda SP, Rao BB. Scope, nutritional importance and value addition in palmyrah (Borassus flabellifer L.): An under exploited crop. Bioactive compounds-biosynthesis, characterization and applications. Intech Open; 2021.
  90. 90. Srivastava A, Bishnoi S, Sarkar P, Anuradha Srivastava S. Value addition in palmyra palm (Borassus flabellifer L.): A potential strategy for livelihood security and poverty alleviation. Rashtriya Krishi. 2017;12(1):110-2.
  91. 91. Siju S, Sabu K. Genetic resources of Asian palmyrah palm (Borassus flabellifer L.): a comprehensive review on diversity, characterization and utilization. Plant Genetic Resources. 2020;18(6):445-53. https://doi.org/10.1017/S1479262120000477
  92. 92. Sathyaruban S, Perera GC, Amarasinghe DJM, Uluwaduge DI, Kuganathan S. Efficiency of the experimental diet enriched with palmyrah (Borassus flabellifer L.) fruit pulp on growth, pigmentation, immune challenge, and breeding performance in the guppy (Poecilia reticulata). Aquaculture Reports. 2024;38:102285. https://doi.org/10.1016/j.aqrep.2024.102285
  93. 93. García-Coronado H, Huerta-Ocampo JÁ, Campos DDJ, Ruiz-Ortega HA, Ojeda-Contreras ÁJ, Anaya-Dyck JM, et al. Omics Sciences advances in tropical fruits and perspectives for crop improvement. Biotechnological Advances in Horticultural Crops. CRC Press; 2024. p. 43-68. https://doi.org/10.1201/9781003343707-3
  94. 94. Arthur C. Evaluation of the mineral composition, antioxidant properties, phytochemical and anti-nutrient composition of African Palmyra Palm (Borassus aethiopum) Fruit Flour. 2019.
  95. 95. Upadhyaya A, Sonawane SK. Palmyrah palm and its products (neera, jaggery and candy)—a review on chemistry and technology. Applied Food Research. 2023;3(1):100256. https://doi.org/10.1016/j.afres.2022.100256
  96. 96. Ponnuswami V, Kumar AR, Prabhu M, Jagadeesan R, Kavino M, Selvi BS. Correlation studies in palmyrah (Borassus flabettifer L.) genotypes; 2008.
  97. 97. Vinujan S, Emmanuel C, Arasakesary S, Srivijeindran S. Lethal yellowing disease in Borassus flabellifer in Jaffna peninsula. Journal of Science. 2022;13(1):40-8. https://doi.org/10.4038/jsc.v13i1.42
  98. 98. George J, Karun A, Manimekalai R, Rajesh M, Remya P. Identification of RAPD markers linked to sex determination in palmyrah (Borassus flabellifer L.). Current science. 2007;93(8):1075-7.
  99. 99. Ponnuswami V. Genetic diversity in palmyrah genotypes using morphological and molecular markers. Electronic Journal of Plant Breeding. 2010;1(4):556-67.
  100. 100. Huang H, Zhao L, Zhang B, Huang W, Zhang Z, An B. Integrated analysis of the metabolome and transcriptome provides insights into anthocyanin biosynthesis of cashew apple. Food Research International. 2024;175:113711. https://doi.org/10.1016/j.foodres.2023.113711
  101. 101. Yin X, Wang T, Zhang M, Zhang Y, Irfan M, Chen L, et al. Role of core structural genes for flavonoid biosynthesis and transcriptional factors in flower color of plants. Biotechnology & Biotechnological Equipment. 2021;35(1):1214-29. https://doi.org/10.1080/13102818.2021.1960605
  102. 102. Desai A, Singh N. Biodiversity, varietal wealth and molecular applications in cashew. Cashew Production Technology.
  103. 103. Olubode O, Joseph-Adekunle T, Hammed L, Olaiya A. Evaluation of production practices and yield enhancing techniques on productivity of cashew (Anacardium occidentale L.). Fruits. 2018;73(2):75-100. https://doi.org/10.17660/th2018/73.2.1
  104. 104. Palei S, Dasmohapatra R, Samal S, Rout GR. Cashew nut (Anacardium occidentale L.) breeding strategies. In: Advances in plant breeding strategies: nut and beverage crops. Springer, Cham.; 2019. p. 77-104. https://doi.org/10.1007/978-3-030-23112-5_4
  105. 105. Houndahouan DET, Sikirou R, Banito A, Basso A, Zinsou V, Amagnidé A, et al. Assessment and diagnostic of cashew seedling diseases in nurseries in Benin. Net Journal of Agricultural Science. 2022;10:9-19. https://doi.org/10.30918/NJAS.101.21.031
  106. 106. Rupa TR, Rejani R, Bhat MG. Impact of climate change on cashew and adaptation strategies. Climate-resilient horticulture: adaptation and mitigation strategies. Springer; 2013. p. 189-98. https://doi.org/10.1007/978-81-322-0974-4_17
  107. 107. Carneiro PT, Fernandes PD, Gheyi HR, Soares FAL, Viana SBA. Salt tolerance of precocious-dwarf cashew rootstocks: physiological and growth indexes. Scientia Agricola. 2004;61:9-16. https://doi.org/10.1590/S0103-90162004000100002
  108. 108. De Mori G, Cipriani G. Marker-assisted selection in breeding for fruit trait improvement: A review. International Journal of Molecular Sciences. 2023;24(10):8984. https://doi.org/10.3390/ijms24108984
  109. 109. DeHaan LR, Van Tassel DL. Useful insights from evolutionary biology for developing perennial grain crops1. American Journal of Botany. 2014;101(10):1801-19. https://doi.org/10.3732/ajb.1400084
  110. 110. DeHaan L, Larson S, López-Marqués RL, Wenkel S, Gao C, Palmgren M. Roadmap for accelerated domestication of an emerging perennial grain crop. Trends in Plant Science. 2020;25(6):525-37. https://doi.org/10.1016/j.tplants.2020.02.004
  111. 111. Vinod K, Suryakumar M. Breeding for quality improvement in plantation crops. Proceedings of the training programme on "Plant Breeding Approaches for Quality Improvement of Crops". Tamil Nadu Agricultural University, Coimbatore, India; 2004. p. 535-47.
  112. 112. Batugal P, Bourdeix R, Baudouin L. Coconut breeding. Breeding plantation tree crops: Tropical species: Springer; 2009. p. 327-75. https://doi.org/10.1007/978-0-387-71201-7_10
  113. 113. Nieves-Orduña HE, Krutovsky KV, Gailing O. Geographic distribution, conservation, and genomic resources of cacao Theobroma cacao L. Crop Science. 2023;63(4):1750-78. https://doi.org/10.1002/csc2.20959
  114. 114. Singh AK, Bisen J, Chauhan R, Choubey M, Kumar R, Kumar N. Tea research for Darjeeling tea industry-various aspects. In: Tea Technological Initiatives. New India Publishing Agency; 2016. p. 195-239.
  115. 115. Soh AC. Breeding and genetics of the oil palm. In: Palm Oil. AOCS Press; 2012. p. 31-58. https://doi.org/10.1016/B978-0-9818936-9-3.50005-8
  116. 116. Ferrao R, Ferrao M, Da Fonseca A, Riva-souza E. Self-incompatibility and sustainable production of Conilon coffee; 2019.
  117. 117. Bewley JD, Black M. Physiology and biochemistry of seeds in relation to germination: volume 2: viability, dormancy, and environmental control: Springer Science & Business Media; 2012.
  118. 118. Mustiga GM, Gezan SA, Phillips-Mora W, Arciniegas-Leal A, Mata-Quirós A, Motamayor JC. Phenotypic description of Theobroma cacao L. for yield and vigor traits from 34 hybrid families in Costa Rica based on the genetic basis of the parental population. Frontiers in Plant Science. 2018;9:808. https://doi.org/10.3389/fpls.2018.00808
  119. 119. Shehasen MZ. Tea plant (Camellia sinensis) breeding mechanisms role in genetic improvement and production of major producing countries. International Journal of Research Studies in Science, Engineering and Technology. 2019;6(11):10-20.
  120. 120. Priyadarshan P. Refinements to Hevea rubber breeding. Tree Genetics & Genomes. 2017;13:1-17. https://doi.org/10.1007/s11295-017-1101-8
  121. 121. Sindhumole P, Ambili S. Marker assisted breeding in coconut (Cocos nucifera L.). Gregor Mendel Foundation Proceedings. 2011;2011:30-2.
  122. 122. Babu BK, Mathur R, Anitha P, Ravichandran G, Bhagya H. Phenomics, genomics of oil palm (Elaeis guineensis Jacq.): way forward for making sustainable and high yielding quality oil palm. Physiology and Molecular Biology of Plants. 2021;27:587-604. https://doi.org/10.1007/s12298-021-00964-w
  123. 123. Fister AS, Landherr L, Maximova SN, Guiltinan MJ. Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Frontiers in Plant Science. 2018;9:268. https://doi.org/10.3389/fpls.2018.00268
  124. 124. Fan Y, Xin S, Dai X, Yang X, Huang H, Hua Y. Efficient genome editing of rubber tree (Hevea brasiliensis) protoplasts using CRISPR/Cas9 ribonucleoproteins. Industrial Crops and Products. 2020;146:112146. https://doi.org/10.1016/j.indcrop.2020.112146
  125. 125. Mukhopadhyay M, Mondal TK, Chand PK. Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review. Plant Cell Reports. 2016;35:255-87. https://doi.org/10.1007/s00299-015-1884-8
  126. 126. Yang Y, Iqbal A, Qadri R. Breeding of coconut (Cocos nucifera L.): the tree of life. In: Advances in plant breeding strategies: fruits. Springer, Cham.; 2018. p. 673-725. https://doi.org/10.1007/978-3-319-91944-7_17
  127. 127. Liyanage K, Khan S, Mortimer P, Hyde K, Xu J, Brooks S, et al. Powdery mildew disease of rubber tree. Forest Pathology. 2016;46(2):90-103. https://doi.org/10.1111/efp.12271
  128. 128. Bhorali P, Gohain B, Gupta S, Bharalee R, Bandyopadhyay T, Das S, et al. Molecular analysis and expression profiling of blister blight defenserelated genes in tea. Indian Journal of Genetics and Plant Breeding. 2012;72(02):226-33.
  129. 129. Mzena GP, Kusolwa PM, Rwegasira GM, Yao NK. Mapping of quantitative trait loci (QTL) related to yield, nut quality and plant size of cashew (anacardium occidentalel); 2017.
  130. 130. Favoretto P, da Silva CC, Tavares AG, Giatti G, Moraes PF, Lobato MTV, et al. Assisted-selection of naturally caffeine-free coffee cultivars—characterization of SNPs from a methyltransferase gene. Molecular Breeding. 2017;37(3):31. https://doi.org/10.1007/s11032-017-0636-6
  131. 131. Nair KP, Nair KP. Technological advancements in coconut, arecanut and cocoa research: A century of service to the global farming community by the Central Plantation Crops Research Institute, Kasaragod, Kerala State, India. Tree Crops: Harvesting Cash from the World's Important Cash Crops. Springer, Cham.; 2021. p. 377-536. https://doi.org/10.1007/978-3-030-62140-7_11
  132. 132. Subramanian P, Gupta A, Gopal M, Selvamani V, Mathew J, Surekha, et al. Coconut (Cocos nucifera L.). Soil health management for plantation crops: recent advances and new paradigms. Springer; 2024. p. 37-109. https://doi.org/10.1007/978-981-97-0092-9_2
  133. 133. Jazuli NA, Kamu A, Chong KP, Gabda D, Hassan A, Abu Seman I, et al. A review of factors affecting Ganoderma basal stem rot disease progress in oil palm. Plants. 2022;11(19):2462. https://doi.org/10.3390/plants11192462
  134. 134. Yang X, Lin Q, Udayabhanu J, Hua Y, Dai X, Xin S, et al. An optimized CRISPRCas9-based gene editing system for efficiently generating homozygous edited plants in rubber tree (Hevea brasiliensis). Industrial Crops and Products. 2024;222:119740. https://doi.org/10.1016/j.indcrop.2024.119740
  135. 135. Schenke D, Cai D. Applications of CRISPR/Cas to improve crop disease resistance: beyond inactivation of susceptibility factors. Iscience. 2020;23(9):101478. https://doi.org/10.1016/j.isci.2020.101478
  136. 136. Chen Y, Niu S, Deng X, Song Q, He L, Bai D, et al. Genome-wide association study of leaf-related traits in tea plant in Guizhou based on genotyping-by-sequencing. BMC Plant Biology. 2023;23(1):196. https://doi.org/10.1186/s12870-023-04192-0
  137. 137. McCook S, Montero-Mora A. Coffee breeding in a time of crisis: F1 hybrids in Central America since 1990. Plants, People, Planet. 2024;6(5):1070-9. https://doi.org/10.1002/ppp3.10480
  138. 138. Nieves-Orduña HE, Müller M, Krutovsky KV, Gailing O. Genotyping of cacao (Theobroma cacao L.) germplasm resources with SNP markers linked to agronomic traits reveals signs of selection. Tree Genetics & Genomes. 2024;20(3):13. https://doi.org/10.1007/s11295-024-01646-w
  139. 139. Adivappar N, Amulya R, Satish K, Nagaraja N. Genetic relationship and diversity analysis in arecanut (Areca catechu L.) genotypes using molecular markers. Agricultural Science Digest-A Research Journal. 2022;42(6):688-95. https://doi.org/10.18805/ag.D-5283
  140. 140. Adu-Gyamfi PK, Akpertey A, Barnnor M, Ofori A, Padi F. Genotypic characterization of cashew (Anacardium occidentale L.) clones using agro-morphological traits. Plant-Environment Interactions. 2020;1(3):196-206. https://doi.org/10.1002/pei3.10034
  141. 141. John Martin JJ, Yarra R, Wei L, Cao H. Oil palm breeding in the modern era: Challenges and opportunities. Plants. 2022;11(11):1395. https://doi.org/10.3390/plants11111395
  142. 142. Gonçalves PdS, Moraes MLTd, Bortoletto N, Costa RBd, Gonçalves ECP. Genetic variation in growth traits and yield of rubber trees (Hevea brasiliensis) growing in the Brazilian state of São Paulo. Genetics and Molecular Biology. 2005;28:765-72. https://doi.org/10.1590/S1415-47572005000500019
  143. 143. Sachin A, Baby Santhini B, Sidagireppa D. Genetic diversity in palmyra palm (Borassus flabellifer). National Conference on Palmyra Palm; 2016
  144. 144. Lopes UV, Marques JRB. Diversity, Inbreeding and inbreeding depression in rubber tree. Agrotropica; 2015;27(1):33-44.
  145. 145. Rodrigues de Paiva J, de Moura Barros L, Ribeiro Crisóstomo J, Pratagil Pereira de Araújo J, Guimarães Rossetti A, Jaime Vasconcelos Cavalcante J, et al. Inbreeding depression in early dwarf type progenies of cashew var. Nanum. Pesquisa Agropecuaria Brasileira; 1998.
  146. 146. Barcelos E, Rios SdA, Cunha RN, Lopes R, Motoike SY, Babiychuk E, et al. Oil palm natural diversity and the potential for yield improvement. Frontiers in Plant Science. 2015;6:190. https://doi.org/10.3389/fpls.2015.00190
  147. 147. Leroy T, Ribeyre F, Bertrand B, Charmetant P, Dufour M, Montagnon C, et al. Genetics of coffee quality. Brazilian Journal of Plant Physiology. 2006;18:229-42. https://doi.org/10.1590/S1677-04202006000100016
  148. 148. Karun A, Rajesh M, Ramesh S, Muralikrishna K. Biotechnological advancements in the improvement of Coconut and Arecanut. Indian Horticulture. 2022;67(6):38-43.
  149. 149. Ofori A, Padi FK, Amoako-Attah I, Asare EK, Dadzie A, Bukari Y. Genetic variation among cocoa (Theobroma cacao L.) families for resistance to black pod disease under field and laboratory conditions. Ecological Genetics and Genomics. 2023;28:100182. https://doi.org/10.1016/j.egg.2023.100182
  150. 150. Mahilrajan S, Thuraisingam S, Prabagar J. Exploring the nutritional, health and economic potential of palmyrah fruit pulp. Food Chemistry Advances. 2025;6:100880. https://doi.org/10.1016/j.focha.2024.100880
  151. 151. Soh AC, Mayes S, Roberts J, Zaki NM, Madon M, Schwarzacher T, et al. Molecular genetics and breeding. In: Oil palm breeding. CRC Press; 2017. p. 225-82. https://doi.org/10.1201/9781315119724-9
  152. 152. Wickramasuriya AM, Dunwell JM. Cacao biotechnology: current status and future prospects. Plant Biotechnology Journal. 2018;16(1):4-17. https://doi.org/10.1111/pbi.12848
  153. 153. Yarra R, Cao H, Jin L, Mengdi Y, Zhou L. CRISPR/Cas mediated base editing: a practical approach for genome editing in oil palm. 3 Biotech. 2020;10:1-7. https://doi.org/10.1007/s13205-020-02302-5
  154. 154. Varghese N, Varghese S, Thomas S. Radiation processing of natural rubber latex. In: Applications of high energy radiations: synthesis and processing of polymeric materials. Springer; 2023. p. 279-315. https://doi.org/10.1007/978-981-19-9048-9_9
  155. 155. Kamau NP. Characterization of gamma irradiated tea accessions using biochemical and morphological markers; May 2021.
  156. 156. Jankowicz-Cieslak J, Goessnitzer F, Nielen S, Ingelbrecht IL. Chemical mutagenesis of mature seed of Coffea arabica L. var. Venecia using EMS. In: Mutation breeding in coffee with special reference to leaf rust: protocols. Springer Berlin Heidelberg Berlin, Heidelberg; 2023. p. 163-78. https://doi.org/10.1007/978-3-662-67273-0_12
  157. 157. Wang L, Lee M, Wan ZY, Bai B, Ye B, Alfiko Y, et al. Chromosome-level reference genome provides insights into divergence and stress adaptation of the African oil palm. bioRxiv. 2022. https://doi.org/10.1101/2022.05.16.492201
  158. 158. Motamayor JC, Mockaitis K, Schmutz J, Haiminen N, Iii DL, Cornejo O, et al. The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome Biology. 2013;14:1-25. https://doi.org/10.1186/gb-2013-14-6-r53
  159. 159. Phonphoem W, Sinthuvanich C, Aramrak A, Sirichiewsakul S, Arikit S, Yokthongwattana C. Nutritional profiles, phytochemical analysis, antioxidant activity and DNA damage protection of makapuno derived from Thai aromatic coconut. Foods. 2022;11(23):3912. https://doi.org/10.3390/foods11233912
  160. 160. Lu L, Wang Y, Sayed MA, Iqbal A, Yang Y. Exploring the physiological and molecular mechanisms by which potassium regulates low-temperature tolerance of coconut (Cocos nucifera L.) seedlings. Agronomy. 2024;14(12):2983. https://doi.org/10.3390/agronomy14122983
  161. 161. Li Jia LJ, Liu LiYun LL, Li Yan LY, Zhou HuanQi ZH. Effects of super absorbent polymer on physiological characteristics of Areca catechu L. under drought stress. Journal of Suthern Agriculture. 2018;49(1):104-8.
  162. 162. Widjaja T, Altway A, Nury DF, Iswanto T. Optimization of fermentation to enhance ethanol production from palmyra sap (borassus flabellifer) using Saccharomyces cerevisiae. ARPN Journal of Engineering and Applied Sciences. 2019;14(5):967-73.
  163. 163. Asna A, Menon JS. Cashew: history, evolutionary origin, genetic resources, improvement and advances in breeding. In: Economically important trees: origin, evolution, genetic diversity and ecology. Springer; 2024. p. 391-433. https://doi.org/10.1007/978-981-97-5940-8_11
  164. 164. Ahmad Malike F, Amiruddin MD, Yaakub Z, Marjuni M, Abdullah N, Abu Bakar NA, et al. Oil palm (Elaeis spp.) breeding in Malaysia. In: Advances in plant breeding strategies: industrial and food crops. Springer; 2019. p. 489-535. https://doi.org/10.1007/978-3-030-23265-8_13
  165. 165. Pathirana R, Carimi F. Plant biotechnology—an indispensable tool for crop improvement. Plants. 2024;13(8):1133. https://doi.org/10.3390/plants13081133
  166. 166. Maritim T, Seth R, Holkar A, Sharma RK. Population genomics and genomics-assisted trait improvement in tea (Camellia sinensis (L.) O. Kuntze). In: Population genomics: crop plants. Springer; 2023. p. 341-73. https://doi.org/10.1007/13836_2023_108
  167. 167. Casarin T, Freitas NC, Pinto RT, Breitler JC, Rodrigues LAZ, Marraccini P, et al. Multiplex CRISPR/Cas9-mediated knockout of the phytoene desaturase gene in Coffea canephora. Scientific Reports. 2022;12(1):17270. https://doi.org/10.1038/s41598-022-21566-w
  168. 168. Bandupriya H, Perera S. Coconut genomics. In: Oil crop genomics. Springer, Cham.; 2021. p. 161-88. https://doi.org/10.1007/978-3-030-70420-9_9
  169. 169. Siddanna S, Muralidhara BM, Palpandian P. Advances in genomics of cashew tree: molecular tools and strategies for accelerated breeding. Tree Genetics & Genomes. 2020;16(5):61. https://doi.org/10.1007/s11295-020-01453-z
  170. 170. Savadi S, Muralidhara BM, Preethi P. Advances in genomics of cashew tree: molecular tools and strategies for accelerated breeding. Tree Genetics & Genomes. 2020;16(5):61. https://doi.org/10.1007/s11295-020-01453-z
  171. 171. Ramesh S, Rajesh M, Das A, Hebbar K. CRISPR/Cas9-based genome editing to expedite the genetic improvement of palms: challenges and prospects. Frontiers in Plant Science. 2024;15:1385037. https://doi.org/10.3389/fpls.2024.1385037

Downloads

Download data is not yet available.