Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Nanofertilizers in vegetable crops: Harnessing nanotechnology for improved crop nutrition and environmental sustainability

DOI
https://doi.org/10.14719/pst.8428
Submitted
21 March 2025
Published
24-07-2025 — Updated on 31-07-2025
Versions

Abstract

Nanofertilizers represent a groundbreaking advancement in agricultural technology, offering a sustainable solution to enhance crop nutrition and address the challenges of global food security. Traditional fertilizers, while essential for crop production, often result in significant nutrient losses, environmental pollution and soil degradation due to low nutrient use efficiency (NUE). In contrast, nanofertilizers, engineered at the nanoscale, provide precise and controlled nutrient delivery, minimizing losses and maximizing plant uptake. These innovative fertilizers improve NUE, enhance crop yields and reduce environmental impacts such as nutrient leaching and water pollution. By leveraging nanotechnology, nanofertilizers facilitate better nutrient absorption, improved root development and enhanced stress tolerance in plants, leading to higher-quality produce and extended shelf life, particularly in fresh-cut vegetables. This review explores the transformative potential of nanofertilizers in sustainable agriculture, highlighting their mechanisms of action, benefits and applications across various crops. Despite their promise, challenges such as regulatory concerns, production costs and potential ecological risks must be addressed to ensure their safe and widespread adoption. As the global population continues to grow, nanofertilizers stand at the forefront of agricultural innovation, offering a pathway to sustainable crop production and food security. Future research should focus on optimizing nanofertilizer formulations, assessing long-term environmental impacts and developing cost-effective production strategies to facilitate their large-scale adoption.

References

  1. 1. Preetha S, Kannan M, Lokesh S, Viji N, Prithiva J, Gowtham V. Titanium dioxide (TiO2) nanoparticles as a novel insecticide against diamondback moth, Plutella xylostella L. in cauliflower. 2018;11(21).
  2. 2. Marchiol L, Iafisco M, Fellet G, Adamiano A. Nanotechnology support the next agricultural revolution: Perspectives to enhancement of nutrient use efficiency. Adv Agron. 2020;161:27-116. https://doi.org/10.1016/bs.agron.2019.12.001
  3. 3. Kumar P, Mahajan P, Kaur R, Gautam S. Nanotechnology and its challenges in the food sector: A review. Mater Today Chem. 2020;17:100332. https://doi.org/10.1016/j.mtchem.2020.100332
  4. 4. Nongbet A, Mishra AK, Mohanta YK, Mahanta S, Ray MK, Khan M, et al. Nanofertilizers: A smart and sustainable attribute to modern agriculture. Plants. 2022;11(19):2587. https://doi.org/10.3390/plants11192587
  5. 5. Dimkpa CO, Bindraban PS. Nanofertilizers: new products for the industry? J Agric Food Chem. 2017;66(26):6462-73. https://doi.org/10.1021/acs.jafc.7b02150
  6. 6. Kumar Y, Tiwari K, Singh T, Raliya R. Nanofertilizers and their role in sustainable agriculture. Ann Plant Soil Res. 2021;23(3):238-55. https://doi.org/10.47815/apsr.2021.10067
  7. 7. Deepa M, Sudhakar P, Nagamadhuri KV, Reddy KB, Krishna TG, Prasad TNVKV. First evidence on phloem transport of nanoscale calcium oxide in groundnut using solution culture technique. Appl Nanosci. 2015;5:545-51. https://doi.org/10.1007/s13204-014-0348-8
  8. 8. Trenkel ME. Controlled-release and stabilized fertilizers in agriculture. Paris: International Fertilizer Industry Association; 1997.
  9. 9. Giroto AS, Guimarães GG, Foschini M, Ribeiro C. Role of slow-release nanocomposite fertilizers on nitrogen and phosphate availability in soil. Sci Rep. 2017;7(1):46032. https://doi.org/10.1038/srep46032
  10. 10. Chinnamuthu C, Boopathi PM. Nanotechnology and agroecosystem. Madras Agric J. 2009;96(1).
  11. 11. DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y. Nanotechnology in fertilizers. Nat Nanotechnol. 2010;5(2):91. https://doi.org/10.1038/nnano.2010.2
  12. 12. Brady NC, Weil RR, Weil RR. The nature and properties of soils. Upper Saddle River (NJ): Prentice Hall; 2008.
  13. 13. Kah M, Kookana RS, Gogos A, Bucheli TD. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol. 2018;13(8):677-84. https://doi.org/10.1038/s41565-018-0131-1
  14. 14. Cui H, Sun C, Liu Q, Jiang J, Gu W, editors. Applications of nanotechnology in agrochemical formulation, perspectives, challenges and strategies. In: International Conference on Nanoagri. Sao Pedro, Brazil; 2010.
  15. 15. Kottegoda N, Munaweera I, Madusanka N, Sandaruwan C, Sirisena D, Disanayake N, et al. Plant nutrient nanoparticles encapsulated cellulose matrix for slow and sustained release of nitrogen. Curr Sci. 2011;101(1):73-8.
  16. 16. Ghormade V, Deshpande MV, Paknikar KM. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv. 2011;29(6):792-803. https://doi.org/10.1016/j.biotechadv.2011.06.007
  17. 17. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS. Nanoparticulate material delivery to plants. Plant Sci. 2010;179(3):154-63. https://doi.org/10.1016/j.plantsci.2010.04.012
  18. 18. Prasad T, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, et al. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr. 2012;35(6):905-27. https://doi.org/10.1080/01904167.2012.663443
  19. 19. Chhipa H. Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett. 2017;15:15-22. https://doi.org/10.1007/s10311-016-0600-4
  20. 20. Babu S, Singh R, Yadav D, Rathore SS, Raj R, Avasthe R, et al. Nanofertilizers for agricultural and environmental sustainability. Chemosphere. 2022;292:133451. https://doi.org/10.1016/j.chemosphere.2021.133451
  21. 21. El-Sayed M, Ayoub HA, Helal M, Sang W, Shen Z, Abdelhafeez IA. Nanotechnology-enabled soil management for sustainable agriculture: interactions, challenges, and prospective. Environ Sci Nano. 2025;4. https://doi.org/10.1039/D4EN00943F
  22. 22. Indian Farmers Fertiliser Cooperative (IFFCO). Nano Urea Technology Report. New Delhi: IFFCO; 2023.
  23. 23. Yadav A, Yadav K, Abd-Elsalam KA. Nanofertilizers: types, delivery and advantages in agricultural sustainability. Agrochemicals. 2023;2(2):296-336. https://doi.org/10.3390/agrochemicals2020019
  24. 24. Okey-Onyesolu CF, Hassanisaadi M, Bilal M, Barani M, Rahdar A, Iqbal J, et al. Nanomaterials as nanofertilizers and nanopesticides: an overview. ChemistrySelect. 2021;6(33):8645-63. https://doi.org/10.1002/slct.202102379
  25. 25. Jakhar AM, Aziz I, Kaleri AR, Hasnain M, Haider G, Ma J, et al. Nano-fertilizers: A sustainable technology for improving crop nutrition and food security. NanoImpact. 2022;27:100411. https://doi.org/10.1016/j.impact.2022.100411
  26. 26. Verma KK, Song XP, Degu HD, Guo DJ, Joshi A, Huang HR, et al. Recent advances in nitrogen and nano-nitrogen fertilizers for sustainable crop production: a mini-review. Chem Biol Technol Agric. 2023;10(1):111. https://doi.org/10.1186/s40538-023-00488-3
  27. 27. Ajirloo AR, Shaaban M, Motlagh ZR. Effect of K nano-fertilizer and N bio-fertilizer on yield and yield components of tomato (Lycopersicon esculentum L.). Int J Adv Biol Biom Res. 2015;3(1):138-43. https://doi.org/10.1080/01904167.2012.663443
  28. 28. Abdel-Aziz H, Hasaneen M, Omer A. Impact of engineered nanomaterials either alone or loaded with NPK on growth and productivity of French bean plants: Seed priming vs foliar application. S Afr J Bot. 2019;125:102–8. https://doi.org/10.1016/j.sajb.2019.07.005
  29. 29. Al-Uthery H, Al-Shami Q. Impact of fertigation of nano NPK fertilizers, nutrient use efficiency and distribution in soil of potato (Solanum tuberosum L.). Plant Arch. 2019;19(1):1087-96.
  30. 30. Kinaci G, Kinaci E. Effect of zinc application on quality traits of barley in semi-arid zones of Turkey. Plant Soil Environ. 2005;51(7). https://doi.org/10.17221/3594-PSE
  31. 31. Kadim AAYAM. Impact of nano chelated iron, GA3 and organic fertilizer (Acadian) in moringa leaves content of a-Tocopherol and phytosterols. Res J Pharm Technol. 2018;11(5):1840-6. https://doi.org/10.5958/0974-360X.2018.00342.6
  32. 32. Mohd Nor M, Zamri I, Sabki S, Khalisanni K. Effect of nano fertilizer on number of leaves and chlorophyll reading for dwarfed long bean (Vigna sesquipedalis). 2018.
  33. 33. Mohd Nor M, Zamri I, Khalisanni K. Effect of nano fertilizer on early growth, height and stem diameter of dwarfed long bean (Vigna sesquipedalis). 2018.
  34. 34. Farnia A, Ghorbani A. Effect of K nano-fertilizer and N bio-fertilizer on yield and yield components of red bean (Phaseolus vulgaris L.). 2014;5(12):296-303.
  35. 35. Nibin P, Ushakumari K, Ishrath P. Organic nano NPK formulations on soil microbial and enzymatic activities on post-harvest soil of Bhindi. Int J Curr Microbiol Appl Sci. 2019;8(4):1814-9. https://doi.org/10.20546/ijcmas.2019.804.210
  36. 36. Subramani T, Velmurugan A, Bommayasamy N, Swarnam T, Ramakrishna Y, Jaisankar I, et al. Effect of Nano Urea on growth, yield and nutrient use efficiency of Okra under tropical island ecosystem. Int J Agric Sci. 2023;19:134-9. https://doi.org/10.15740/HAS/IJAS/19.RAAAHSTSE-2023/134-139
  37. 37. Mahmoud S, Salama DM, Abd El-Aziz M. Effect of chitosan and chitosan nanoparticles on growth, productivity and chemical quality of green snap bean. Biosci Res. 2018;15(4):4307-21.
  38. 38. Malerba M, Cerana R. Chitosan effects on plant systems. Int J Mol Sci. 2016;17(7):996. https://doi.org/10.3390/ijms17070996
  39. 39. Kale AP, Gawade SN. Studies on nanoparticle induced nutrient use efficiency of fertilizer and crop productivity. Green Chem Technol Lett. 2016;2(2):88-92. https://doi.org/10.18510/gctl.2016.226
  40. 40. Raliya R, Tarafdar JC. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res. 2013;2:48-57. https://doi.org/10.1007/s40003-012-0049-z
  41. 41. Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY. Role of nanoparticles in plants. In: Nanotechnology and plant sciences: nanoparticles and their impact on plants. Springer, Cham.; 2015. p. 19-35. https://doi.org/10.1007/978-3-319-14502-0_2
  42. 42. Hussein AK, Amir HK, Fadel AH. Effect of cultivation methods, adding organic matter and nano-fertilizers on the yield components of (Vicia faba L.). In: IOP Conf Ser Earth Environ Sci. IOP Publishing; 2025. p. 012077. https://doi.org/10.1088/1755-1315/1487/1/012077
  43. 43. Singh N, Amist N, Yadav K, Singh D, Pandey J, Singh S. Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. J Nanoeng Nanomanuf. 2013;3(4):353-64. https://doi.org/10.1166/jnan.2013.1156
  44. 44. Elmer WH, White JC. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ Sci Nano. 2016;3(5):1072-9. https://doi.org/10.1039/C6EN00146G
  45. 45. Hernández-Hernández H, Quiterio-Gutiérrez T, Cadenas-Pliego G, Ortega-Ortiz H, Hernández-Fuentes AD, Cabrera de la Fuente M, et al. Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants. 2019;8(10):355. https://doi.org/10.3390/plants8100355
  46. 46. Karami M, Bahabadi MA, Delfani S, Ghozatloo A. A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector. Sol Energy Mater Sol Cells. 2014;121:114-8. https://doi.org/10.1016/j.solmat.2013.11.004
  47. 47. Pallavi, Mehta C, Srivastava R, Arora S, Sharma A. Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech. 2016;6:1-10. https://doi.org/10.1007/s13205-016-0567-7
  48. 48. Mahmoud AWM, Abdelaziz SM, El-Mogy MM, Abdeldaym EA. Effect of foliar ZnO and FeO nanoparticles application on growth and nutritional quality of red radish and assessment of their accumulation on human health. Agriculture. 2019;65(1):16-29. https://doi.org/10.2478/agri-2019-0002
  49. 49. Ekinci M, Dursun A, Yildirim E, Parlakova F. Effects of nanotechnology liquid fertilizers on the plant growth and yield of cucumber (Cucumis sativus L.). Acta Sci Pol Hortorum Cultus. 2014;13(3):135-141.
  50. 50. Janmohammadi M, Pornour N, Javanmard A, Sabaghnia N. Effects of bio-organic, conventional and nanofertilizers on growth, yield and quality of potato in cold steppe. Bot Lith. 2016;22(2):133-44. https://doi.org/10.1515/botlit-2016-0014
  51. 51. Poberezny J, Wszelaczynska E, Wichrowska D, Jaskulski D. Content of nitrates in potato tubers depending on the organic matter, soil fertilizer, cultivation simplifications applied and storage. Chil J Agric Res. 2015;75(1):42-9.
  52. 52. An J, Zhang M, Wang S, Tang J. Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT-Food Sci Technol. 2008;41(6):1100-7. https://doi.org/10.1016/j.lwt.2007.06.019
  53. 53. Xu X, Dong Y, Xu W, Wang S, Zhu J, Xu Y, et al. Quality changes in fresh-cut lettuce when subjected to ultrasound combined with zinc oxide nanoparticle (ZnO NP) treatment. Coatings. 2024;14(8). https://doi.org/10.3390/coatings14080943
  54. 54. Shukla P, Chaurasia P, Younis K, Qadri OS, Faridi SA, Srivastava G. Nanotechnology in sustainable agriculture: studies from seed priming to post-harvest management. Nanotechnol Environ Eng. 2019;4:1-15. https://doi.org/10.1007/s41204-019-0058-2
  55. 55. Youssef AM, Assem FM, Abdel-Aziz ME, Elaaser M, Ibrahim OA, Mahmoud M, et al. Development of bionanocomposite materials and its use in coating of Ras cheese. Food Chem. 2019;270:467-75. https://doi.org/10.1016/j.foodchem.2018.07.114
  56. 56. Becaro AA, Puti FC, Panosso AR, Gern JC, Brandão HM, Correa DS, et al. Postharvest quality of fresh-cut carrots packaged in plastic films containing silver nanoparticles. Food Bioproc Tech. 2016;9:637-49. https://doi.org/10.1007/s11947-015-1656-z
  57. 57. Pinedo-Guerrero ZH, Hernández-Fuentes AD, Ortega-Ortiz H, Benavides-Mendoza A, Cadenas-Pliego G, Juárez-Maldonado A. Cu nanoparticles in hydrogels of chitosan-PVA affects the characteristics of post-harvest and bioactive compounds of jalapeño pepper. Molecules. 2017;22(6):926. https://doi.org/10.3390/molecules22060926
  58. 58. López-Vargas ER, Ortega-Ortíz H, Cadenas-Pliego G, de Alba Romenus K, Cabrera de la Fuente M, Benavides-Mendoza A, et al. Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes. Appl Sci. 2018;8(7):1020. https://doi.org/10.3390/app8071020
  59. 59. Wang Y, Chantreau M, Sibout R, Hawkins S. Plant cell wall lignification and monolignol metabolism. Front Plant Sci. 2013;4:220. https://doi.org/10.3389/fpls.2013.00220
  60. 60. Iqbal M, Umar S, Mahmooduzzafar F. Nano-fertilization to enhance nutrient use efficiency and productivity of crop plants. In: Nanomaterials and plant potential. Springer, Cham; 2019. p. 473-505. https://doi.org/10.1007/978-3-030-05569-1_19
  61. 61. Tariq Z, Iqbal DN, Rizwan M, Ahmad M, Faheem M, Ahmed M. Significance of biopolymer-based hydrogels and their applications in agriculture: a review in perspective of synthesis and their degree of swelling for water holding. RSC Adv. 2023;13(35):24731-54. https://doi.org/10.1039/D3RA03472K
  62. 62. Alsaeedi A, El-Ramady H, Alshaal T, El-Garawany M, Elhawat N, Al-Otaibi A. Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiol Biochem. 2019;139:1-10. https://doi.org/10.1016/j.plaphy.2019.03.008
  63. 63. Kalhapure A. Geoinformatics and nanotechnology for precision farming. Maharashtra: Smt. Yogita Rokade Amey Publication; 2022. p. 180.
  64. 64. Rahman MH, Hasan MN, Nigar S, Ma F, Aly Saad Aly M, Khan MZH. Synthesis and characterization of a mixed nanofertilizer influencing the nutrient use efficiency, productivity, and nutritive value of tomato fruits. ACS Omega. 2021;6(41):27112-20. https://doi.org/10.1021/acsomega.1c03727
  65. 65. Sharaf-Eldin MA, Elsawy MB, Eisa MY, El-Ramady H, Usman M, Zia-ur-Rehman M. Application of nano-nitrogen fertilizers to enhance nitrogen efficiency for lettuce growth under different irrigation regimes. Pak J Agric Sci. 2022;59(3):367-79.
  66. 66. Calabi-Floody M, Medina J, Rumpel C, Condron LM, Hernandez M, Dumont M, et al. Smart fertilizers as a strategy for sustainable agriculture. Adv Agron. 2018;147:119-57. https://doi.org/10.1016/bs.agron.2017.10.003
  67. 67. Tayade R, Ghimire A, Khan W, Lay L, Attipoe JQ, Kim Y. Silicon as a smart fertilizer for sustainability and crop improvement. Biomolecules. 2022;12(8):1027. https://doi.org/10.3390/biom12081027
  68. 68. Raimondi G, Maucieri C, Toffanin A, Renella G, Borin M. Smart fertilizers: What should we mean and where should we go? Ital J Agron. 2021;16(2). https://doi.org/10.4081/ija.2021.1794
  69. 69. Bernela M, Rani R, Malik P, Mukherjee TK. Nanofertilizers: applications and future prospects. In: Nanotechnology. Jenny Stanford Publishing; 2021. p. 289-332. https://doi.org/10.1201/9781003120261-9
  70. 70. Handy RD, Owen R, Valsami-Jones E. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology. 2008;17:315-25. https://doi.org/10.1007/s10646-008-0206-0
  71. 71. Naz MY, Sulaiman SA. Slow release coating remedy for nitrogen loss from conventional urea: a review. J Control Release. 2016;225:109-20. https://doi.org/10.1016/j.jconrel.2016.01.037
  72. 72. Khan M, Siddiqui ZA. Zinc oxide nanoparticles for the management of Ralstonia solanacearum, Phomopsis vexans and Meloidogyne incognita incited disease complex of eggplant. Indian Phytopathol. 2018;71:355-64. https://doi.org/10.1007/s42360-018-0064-5
  73. 73. Panda J, Nandi A, Mishra SP, Pal AK, Pattnaik AK, Jena NK. Effects of nano fertilizer on yield, yield attributes and economics in tomato (Solanum lycopersicum L.). Int J Curr Microbiol Appl Sci. 2020;9(5):2583-91. https://doi.org/10.20546/ijcmas.2020.905.295
  74. 74. Teng Q, Zhang D, Niu X, Jiang C, editors. Influences of application of slow-release nano-fertilizer on green pepper growth, soil nutrients and enzyme activity. In: IOP Conf Ser Earth Environ Sci. IOP Publishing; 2018. https://doi.org/10.1088/1755-1315/208/1/012014
  75. 75. Gajc-Wolska J, Mazur K, Niedzinska M, Kowalczyk K, Zolnierczyk P. The influence of foliar fertilizers on the quality and yield of sweet pepper (L.). Folia Hortic. 2018;30(2):183-90. https://doi.org/10.2478/fhort-2018-0008
  76. 76. Abd El-Azeim M, Sherif M, Hussien M, Tantawy I, Bashandy S. Impacts of nano-and non-nanofertilizers on potato quality and productivity. Acta Ecol Sin. 2020;40(5):388-97. https://doi.org/10.1016/j.chnaes.2019.12.007
  77. 77. Raigond P, Raigond B, Kaundal B, Singh B, Joshi A, Dutt S. Effect of zinc nanoparticles on antioxidative system of potato plants. J Environ Biol. 2017;38(3):435. https://doi.org/10.22438/jeb/38/3/MS-209
  78. 78. Al-Fahdawi AJJ, Allawi MM. Impact of biofertilizers and nano potassium on growth and yield of eggplant (Solanum melongena L.). Plant Arch. 2019;19(2):1809-15.
  79. 79. Abo El-Hamd A, Abd Elwahed A. Improving the growth and yield of okra plants (Abelmoschus esculentus L.) using Lithovit fertilizer. 2018;6(5):65-71
  80. 80. Kushwaha RK, Bharose R, Tripathi M, Katiyar D, Singh RK, Rajput R, et al. Effect of nano urea and nano DAP conjugated with potassium on physical and chemical properties of soil, growth and yield of okra crop (Abelmoschus esculentus L.) var. Sudha. Int J Adv Biochem Res. 2024;8(7):633-7. https://doi.org/10.33545/26174693.2024.v8.i7h.1560
  81. 81. Merghany MM, Shahein MM, Sliem MA, Abdelgawad K, Radwan AF. Effect of nano-fertilizers on cucumber plant growth, fruit yield and its quality. Plant Arch. 2019;19(2):165-72.
  82. 82. Gerdini F. Effect of nano potassium fertilizer on some parchment pumpkin (Cucurbita pepo) morphological and physiological characteristics under drought conditions. Int J Farm Allied Sci. 2016;5(5):367-71.
  83. 83. Abdulhameed MF, Taha AA, Ismail RA. Improvement of cabbage growth and yield by nanofertilizers and nanoparticles. Environ Nanotechnol Monit Manag. 2021;15:100437. https://doi.org/10.1016/j.enmm.2021.100437
  84. 84. Balachandrakumar V, Sowmiya K, Shofiya M, Gopika K, Nithika M. Impact of Nano DAP and Zn EDTA on cowpea growth and yield. Int J Plant Soil Sci. 2024;36(6):317-26. https://doi.org/10.9734/ijpss/2024/v36i64634
  85. 85. Choudhary YS, Saini CS, Jat MK, Chaturvedi V, Choudhary S, Katariya M, et al. Effect of nano fertilizer on growth, yield attributes and yield of cowpea (Vigna unguiculata L.). Afr J Biol Sci. 2024;6:5938-47.
  86. 86. Battikha A, Abdelaal H, Abdalla A, Ibrahim HH. Nano chitosan-N fertilizer affecting the growth and productivity of onion plants under sandy soil conditions. J Environ Stud Res. 2020;10(4):1349-59. https://doi.org/10.21608/jesr.2023.287068
  87. 87. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, et al. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano. 2009;3(10):3221-7. https://doi.org/10.1021/nn900887m
  88. 88. Kumar GD, Raja K, Natarajan N, Govindaraju K, Subramanian K. Invigouration treatment of metal and metal oxide nanoparticles for improving the seed quality of aged chilli seeds (Capsicum annum L.). Mater Chem Phys. 2020;242:122492. https://doi.org/10.1016/j.matchemphys.2019.122492
  89. 89. Siddiqui ZA, Parveen A, Ahmad L, Hashem A. Effects of graphene oxide and zinc oxide nanoparticles on growth, chlorophyll, carotenoids, proline contents and diseases of carrot. Sci Hortic. 2019;249:374-82. https://doi.org/10.1016/j.scienta.2019.01.054
  90. 90. Moghaddasi S, Fotovat A, Khoshgoftarmanesh AH, Karimzadeh F, Khazaei HR, Khorassani R. Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter. Ecotoxicol Environ Saf. 2017;144:543-51. https://doi.org/10.1016/j.ecoenv.2017.06.074
  91. 91. Kachel-Jakubowska M, Bulak P, Bieganowski A. Influence of metal nanocolloids on selected abiotic stress factors in pumpkin. 2017. https://doi.org/10.24326/fmpmsa.2017.26
  92. 92. Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, et al. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol. 2013;13:1-10. https://doi.org/10.1186/1472-6750-13-37
  93. 93. Taimooz SH. Behavior of some nanomaterials in improving the growth of onion plant (Allium cepa) and its effect on Pythium aphanidermatum. 2018.
  94. 94. Wang C, Jiang K, Wu B, Zhou J, Lv Y. Silver nanoparticles with different particle sizes enhance the allelopathic effects of Canada goldenrod on the seed germination and seedling development of lettuce. Ecotoxicology. 2018;27:1116-25. https://doi.org/10.1007/s10646-018-1966-9
  95. 95. Paladugu K, Gunasekaran K. Development of gum Arabic edible coating formulation through nanotechnological approaches and their effect on physico-chemical change in tomato (Solanum lycopersicum L) fruit during storage. Int J Agric Sci. 2017.
  96. 96. Guerra ICD, de Oliveira PDL, de Souza Pontes AL, Lúcio ASSC, Tavares JF, Barbosa-Filho JM, et al. Coatings comprising chitosan and Mentha piperita L. or Mentha× villosa Huds essential oils to prevent common postharvest mold infections and maintain the quality of cherry tomato fruit. Int J Food Microbiol. 2015;214:168-78. https://doi.org/10.1016/j.ijfoodmicro.2015.08.009
  97. 97. Hedayati S, Niakousari M. Effect of coatings of silver nanoparticles and gum arabic on physicochemical and microbial properties of green bell pepper (Capsicum annuum). J Food Process Preserv. 2015;39(6):2001-7. https://doi.org/10.1111/jfpp.12440
  98. 98. Mohammadi A, Hashemi M, Hosseini SM. Postharvest treatment of nanochitosan-based coating loaded with Zataria multiflora essential oil improves antioxidant activity and extends shelf-life of cucumber. Innov Food Sci Emerg Technol. 2016;33:580-8. https://doi.org/10.1016/j.ifset.2015.10.015
  99. 99. Danza A, Conte A, Mastromatteo M, Nobile M de. A new example of nanotechnology applied to minimally processed fruit: the case of fresh-cut melon. 2015.
  100. 100. Xu J, Zhang M, Bhandari B, Kachele R. ZnO nanoparticles combined radio frequency heating: A novel method to control microorganism and improve product quality of prepared carrots. Innov Food Sci Emerg Technol. 2017;44:46-53. https://doi.org/10.1016/j.ifset.2017.07.025

Downloads

Download data is not yet available.