Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Antibacterial and antifungal effects of Hippocratea velutina (Afzel.) leaves and its constituents: Experimental and computational approaches

DOI
https://doi.org/10.14719/pst.8433
Submitted
21 March 2025
Published
26-08-2025 — Updated on 23-09-2025
Versions

Abstract

Hippocratea velutina (HV) Afzel's application in wound care suggests its antimicrobial property, although no scientific data confirms its efficacy. Therefore, the antibacterial and antifungal properties of HV leaves are assessed in this study. The methanol extract of HV was evaluated in vitro against a variety of bacterial strains, including common fungal pathogens like Candida albicans and Aspergillus niger, as well as Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli and Gram-negative Pseudomonas aeruginosa. The antimicrobial properties were assessed using agar well diffusion assays. The HPLC-UV-DAD-identified compounds of HV were docked against DNA gyrase from Bacillus subtilis and Sterol 14-alpha demethylase from Aspergillus flavus. The findings showed that the extract had strong antibacterial and antifungal properties; the inhibition zones for bacterial and fungal strains ranged from 7.0±0.00 to 20.5±4.95 mm and 10.5 ± 0.71 to 12 ± 0.00 mm, respectively, suggesting a broad-spectrum antimicrobial potential. Additionally, the extract demonstrated fungicidal and bactericidal properties at low doses, suggesting its potential as a therapeutic agent. In HV, phenolic compounds such as vitexin and rutin were detected. Sterol 14-alpha demethylase and DNA gyrase showed persistent interactions with rutin and vitexin. These compounds may be working in concert to provide the antimicrobial effects observed. From this study, Hippocratea velutina may be a valuable substitute for conventional antimicrobial medicines, with possible uses in the medical and pharmaceutical sectors. It is recommended that further studies be conducted to evaluate its safety, effectiveness and potential for commercialization, including in vivo investigations and clinical trials.

References

  1. 1. Harris C. Bacteria: diversity, classification and significance in ecosystems and human health. Insight into Epidemiology. 2024;1(1):1111.
  2. 2. Sachdeva S, Sarethy IP. Diving into freshwater microbial metabolites: Pioneering research and future prospects. Int J Environ Health Res. 2025;35(2):282–300. https://doi.org/10.1080/09603123.2024.2351153
  3. 3. McIntyre-Mills JJ. From polarisation to multispecies relationships: re-membering narratives. From polarisation to multispecies relationships: re-generation of the commons in the era of mass extinctions. Singapore: Springer; 2021. p. 173–212. https://doi.org/10.1007/978-981-33-6884-2_10
  4. 4. Wright GD. The “molecular logic” underlying antibiotic activity and structure. Chem Biol. 2003;10(5):381–2. https://doi.org/10.1016/S1074-5521(03)00105-4
  5. 5. Stone M, Bainbridge J, Sanchez AM, Keating SM, Pappas A, Rountree W, et al. Comparison of detection limits of fourth- and fifth-generation combination HIV antigen-antibody, p24 antigen and viral load assays on diverse HIV isolates. J Clin Microbiol. 2018;56(8):2045–17. https://doi.org/10.1128/JCM.02045-17
  6. 6. Kadri SS. Key takeaways from the U.S. CDC's 2019 antibiotic resistance threats report for frontline providers. Crit Care Med. 2020;48(7):939–45.https://doi.org/10.1097/CCM.0000000000004371
  7. 7. Shallcross L, Burke D, Abbott O, Donaldson A, Hallatt G, Hayward A, et al. Factors associated with SARS-CoV-2 infection and outbreaks in long-term care facilities in England: A national cross-sectional survey. Lancet Healthy Longev. 2021;2(3):129–42. https://doi.org/10.1016/S2666-7568(20)30065-9
  8. 8. Saxena S, Dufosse L, Deshmukh SK, Chhipa H, Gupta MK. Endophytic fungi: A treasure trove of antifungal metabolites. Microorganisms. 2024;12(9):1903. https://doi.org/10.3390/microorganisms12091903
  9. 9. Adesanya EO, Adesanya OO, Ogunlakin AD, Ajayi-Odoko OA, Ojo OA, Odugbemi AI, et al. Antimicrobial activity of Petivera alliacea L. root and its constituents: in vitro and in silico studies. Vegetos. 2024;18:1–5. https://doi.org/10.1007/s42535-024-01085-x
  10. 10. Khodaie L, Patel P, Deore S, Surana V, Byahatti V. Synergistic effects of plant extracts for antimicrobial therapy. In: Herbal formulations, phytochemistry and pharmacognosy. Elsevier; 2024. p. 55–76. https://doi.org/10.1016/B978-0-443-15383-9.00005-6
  11. 11. Oladoja FA, Irokosu ES, Ayoola MD, Elijah OO, Akanji MA, Beatrice OT, et al. Evaluation of the antidiabetic activity and toxicological properties of Hippocratea velutina (Afzel.). Clin Complementary Med Pharmacol. 2023;3(2). https://doi.org/10.1016/j.ccmp.2023.100080
  12. 12. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45(4):493–6. https://doi.org/10.1093/ajcp/45.4_ts.493
  13. 13. The development of the BSAC standardized method of disc diffusion testing. J Antimicrob Chemother. 2001;48(1):29–42. https://doi.org/10.1093/jac/48.suppl_1.29
  14. 14. Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: A review of general principles and contemporary practices. Clin Infect Dis. 2009;49(11):1749–55. https://doi.org/10.1086/647952
  15. 15. Dwikat M, Amer J, Jaradat N, Salhab A, Rahim AA, Qadi M, et al. Arum palaestinum delays hepatocellular carcinoma proliferation through the PI3K-AKT-mTOR signaling pathway and exhibits anticoagulant effects with antimicrobial properties. Front Pharmacol. 2023;14:1180262. https://doi.org/10.3389/fphar.2023.1180262
  16. 16. Arendrup MC, Friberg N, Mares M, Kahlmeter G, Meletiadis J, Guinea J, et al. How to interpret MICs of antifungal compounds according to the revised clinical breakpoints v. 10.0 European committee on antimicrobial susceptibility testing (EUCAST). Clin Microbiol Infect. 2020;26(11):1464–72. https://doi.org/10.1016/j.cmi.2020.06.007
  17. 17. Vanitha PR, Somashekaraiah R, Divyashree S, Pan I, Sreenivasa MY. Antifungal activity of probiotic strain Lactiplantibacillus plantarum MYSN7 against Trichophyton tonsurans. Front Microbiol. 2023;14:1192449. https://doi.org/10.3389/fmicb.2023.1192449
  18. 18. Araujo-Leon JA, Cantillo-Ciau Z, Ruiz-Ciau DV, Coral-Martinez TI. HPLC profile and simultaneous quantitative analysis of tingenone and pristimerin in four Celastraceae species using HPLC-UV-DAD-MS. Rev Bras Farmacogn. 2019;29:171–6. https://doi.org/10.1016/j.bjp.2018.12.009
  19. 19. Release S. 1: Protein Preparation Wizard; Epik, Schrodinger, LLC. Impact, Schrodinger, LLC. 2020.
  20. 20. Sundarrajan S, Nandakumar MP, Prabhu D, Jeyaraman J, Arumugam M. Conformational insights into the inhibitory mechanism of phyto-compounds against Src kinase family members implicated in psoriasis. J Biomol Struct Dyn. 2020;38(5):1398–414. https://doi.org/10.1080/07391102.2019.1605934
  21. 21. Surekha K, Nachiappan M, Prabhu D, Choubey SK, Biswal J, Jeyakanthan J. Identification of potential inhibitors for oncogenic target of dihydroorotate dehydrogenase using in silico approaches. J Mol Struct. 2017;1127:675–88. https:doi.org/10.1016/j.moistruc.2016.08.015
  22. 22. Dey D, Kumar A. Structural-based study to identify the repurposed candidates against bacterial infections. Curr Med Chem. 2025;32(18):3693–718. https://doi.org/10.2174/0109298673296749240207115303
  23. 23. Bathula R, Muddagoni N, Lanka G, Dasari M, Potlapally S. Glide docking, autodock, binding free energy and drug-likeness studies for prediction of potential inhibitors of cyclin-dependent kinase 14 protein in Wnt signaling pathway. Biointerface Res Appl Chem. 2021;12(2):2473–88. https://doi.org/10.33263/BRIAC122.24732488
  24. 24. Prabhu D, Rajamanikandan S, Saritha P, Jeyakanthan J. Evolutionary significance and functional characterization of streptomycin adenylyltransferase from Serratia marcescens. J Biomol Struct Dyn. 2020;38(15):4418–31. https://doi.org/10.1080/07391102.2019.1682046
  25. 25. Rao RG, Biswal J, Dhamodharan P, Kanagarajan S, Jeyaraman J. Identification of potential inhibitors for AIRS from de novo purine biosynthesis pathway through molecular modeling studies – A computational approach. J Biomol Struct Dyn. 2016;34(10):2199–213. https://doi.org/10.1080/07391102.2015.1110833
  26. 26. Broni E, Striegel A, Ashley C, Sakyi PO, Peracha S, Velazquez M, et al. Molecular docking and dynamics simulation studies predict potential anti-ADAR2 inhibitors: implications for the treatment of cancer, neurological, immunological and infectious diseases. Int J Mol Sci. 2023;24(7):6795. https://doi.org/10.3390/ijms24076795
  27. 27. Vyas K, Prabaker S, Prabhu D, Sakthivelu M, Rajamanikandan S, Velusamy P, et al. Study of an inhibitory effect of plant polyphenolic compounds against digestive enzymes using bench-working experimental evidence predicted by molecular docking and dynamics. Int J Biol Macromol. 2024;259:129222. https://doi.org/10.1016/j.ijbiomac.2024.129222
  28. 28. Rahman MS, Anwar MN. Antimicrobial activity of crude extract obtained from the root of Plumbago zeylanica. Bangladesh J Microbiol. 2007;24:73–5. https://doi.org/10.3329/bjm.v24i1.1244
  29. 29. Parvin S, Kader MA, Chouduri AU, Rafshanjani MA, Haque ME. Antibacterial, antifungal and insecticidal activities of the n-hexane and ethyl-acetate fractions of methanolic extract of the leaves of Calotropis gigantea Linn. J Pharmacogn Phytochem. 2014;2(5):47–51.
  30. 30. Pacheco AG, Alcantara AF, Abreu VG, Correa GM. Relationships between chemical structure and activity of triterpenes against gram-positive and gram-negative bacteria. In: A search for antibacterials agents. InTech, Rijeka. 2012;1–24. https://doi.org/10.5772/45649
  31. 31. Chuah E, Zakaria Z, Suhaili Z, Abu Bakar Jamaludin S, Mohd Desa M. Antimicrobial activities of plant extracts against methicillin-susceptible and methicillin-resistant Staphylococcus aureus. J Microbiol Res. 2014;4:6–13. https://doi.org/10.1016/j.microbiology.2024040102
  32. 32. Sharifi-Rad J, Mnayer D, Roointan A, Shahri F, Ayatollahi SAM, Sharifi-Rad M, et al. Antibacterial activities of essential oils from Iranian medicinal plants on extended-spectrum ββ-lactamase-producing Escherichia coli. Cell Mol Biol. 2016;62:75–82. https://doi.org/10.14715/cmb/2016.62.9.12
  33. 33. Niranjan PS, Kaushal C, Jain S. Pharmacological investigation of leaves of Polypodium decumanum for antidiabetic activity. J Drug Deli Ther. 2017;7(4):69–72. https://doi.org/10.1016/10.22270/jddt.v7i4.1468
  34. 34. Manso T, Lores M, de Miguel T. Antimicrobial activity of polyphenols and natural polyphenolic extracts on clinical isolates. Antibiotics (Basel). 2021;11(1):46. https://doi.org/10.1016/10.5923/10.3390/antibiotics11010046
  35. 35. Memar MY, Yekani M, Sharifi S, Dizaj SM. Antibacterial and biofilm inhibitory effects of rutin nanocrystals. Biointerface Res Appl Chem. 2022;13:132. https://doi.org/10.33263/BRIAC132.132
  36. 36. Alnour TM, Ahmed-Abakur EH, Elssaig EH, Abuduhier FM, Ullah MF. Antimicrobial synergistic effects of dietary flavonoids rutin and quercetin in combination with antibiotics gentamicin and ceftriaxone against Escherichia coli (MDR) and Proteus mirabilis (XDR) strains isolated from human infections: implications for food-medicine interactions. Ital J Food Sci. 2022;34(2):34–42. https://doi.org/10.15586/ijfs.v34i2.2196
  37. 37. Yi L, Bai Y, Chen X, Wang W, Zhang C, Shang Z, et al. Synergistic effects and mechanisms of action of rutin with conventional antibiotics against Escherichia coli. Int J Mol Sci. 2024;25(24):13684. https://doi.org/10.3390/ijms252413684
  38. 38. Oliveira VM, Carraro E, Auler ME, Khalil NM. Quercetin and rutin as potential agents antifungal against Cryptococcus spp. Braz J Biol. 2016;76(4):1029–34. https://doi.org/10.1590/1519-6984.07415
  39. 39. Yoruk E. Rutin hydrate induces autophagic cell death and oxidative stress response in phytopathogenic fungus Fusarium graminearum. Zemdirbyste. 2023;110(4). https://doi.org/10.13080/z-a.2023.110.042
  40. 40. Prasad R, Prasad SB. A review on the chemistry and biological properties of rutin, a promising nutraceutical agent. Asian J Pharm Pharmacol. 2019;5(1):1–20. https://doi.org/10.31024/ajpp.2019.5.s1.1
  41. 41. Chen Y, Yang J, Huang Z, Yin B, Umar T, Yang C, et al. Vitexin mitigates Staphylococcus aureus-induced mastitis via regulation of ROS/ER stress/NF-κκB/MAPK pathway. Oxid Med Cell Longev. 2022;2022(1):7977433. https://doi.org/10.1155/2022/7977433
  42. 42. Das MC, Samaddar S, Jawed JJ, Ghosh C, Acharjee S, Sandhu P, et al. Vitexin alters Staphylococcus aureus surface hydrophobicity to obstruct biofilm formation. Microbiol Res. 2022;263:127126. https://doi.org/10.1016/j.micres.2025.128058
  43. 43. Munira S, Zaman SU, Muhit MA. Efflux Pump Inhibitory Potential of Vitexin 2"-O-xyloside Against Gram Positive Bacteria Staphylococcus aureus. Dhaka Univ J Pharm Sci. 2022:307–15. https://doi.org/10.3329/dujps.v20i3.59796
  44. 44. Das MC, Sandhu P, Gupta P, Rudrapaul P, De UC, Tribedi P, et al. Attenuation of Pseudomonas aeruginosa biofilm formation by vitexin: A combinatorial study with azithromycin and gentamicin. Sci Rep. 2016;6(1):23347. https://doi.org/10.1038/srep23347
  45. 45. Al-Otibi FO, Alrumaizan GI, Alharbi RI. Evaluation of anticandidal activities and phytochemical examination of extracts prepared from Vitex agnus-castus: a possible alternative in treating candidiasis infections. BMC Complement Med Ther. 2022;22(1):69. https://doi.org/10.1186/s12906-022-03552-x

Downloads

Download data is not yet available.