Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Molecular diversity and transgressive segregation in F₂ population based on SSR markers and phenotypic evaluation in quality protein maize (Zea mays L.)

DOI
https://doi.org/10.14719/pst.8458
Submitted
23 March 2025
Published
30-09-2025 — Updated on 19-10-2025
Versions

Abstract

The present study was conducted during the Zaid (February-June, 2023) at the P.G. Research Farm, MSSSoA, Paralakhemudi, Gajapati, Odisha aimed to identify superior segregants in the (CML149 × CML330) F₂ population and assess their potential for genetic improvement using molecular markers. Among the segregants, F₂-3 and F₂-26 exhibited the highest grain yield per plant (720 g and 719.5 g, respectively) and showed transgressive segregation for yield-contributing traits such as ear length, ear girth, kernel rows per cob and kernels per row. Additionally, variations in protein content, oil content, chlorophyll content and membrane stability index were observed, highlighting their potential for nutritional enhancement and heat stress tolerance. Molecular diversity analysis was conducted in quality protein maize (QPM) using two parent genotypes (CML149 and CML330) and F2 72 population of individuals. Initially, 91 simple sequence repeats (SSRs) markers were screened in the parent genotype and 10 polymorphic markers were selected for further analysis in the F2 population. These 10 markers revealed significant polymorphic ranging from 0.141 (p-umc1798) to 0.812 (p-phi053) with an average polymorphic information content (PIC) of 0.373. Cluster analysis grouped the F2 individuals into 10 clusters. The genetic variability observed in the F2 population of QPM provides valuable insights for exploiting heterosis and developing genetically diverse breeding lines aimed at improving QPM traits.

References

  1. 1. Kaul J, Jain K, Olakh D. An overview on role of yellow maize in food, feed and nutrition security. Int J Curr Microbiol Appl Sci. 2019;8(02):3037-48. https://doi.org/10.20546/ijcmas.2019.802.356
  2. 2. Marag PS, Suman A. Growth stage and tissue specific colonization of endophytic bacteria having plant growth promoting traits in hybrid and composite maize (Zea mays L.). Microbiol Res. 2018;214:101-13. https://doi.org/10.1016/j.micres.2018.05.016
  3. 3. Tanumihardjo SA, McCulley L, Roh R, Lopez-Ridaura S, Palacios-Rojas N, Gunaratna NS. Maize agro-food systems to ensure food and nutrition security in reference to the Sustainable Development Goals. Glob Food Sec. 2020;25:100327. https://doi.org/10.1016/j.gfs.2019.100327
  4. 4. Grote U, Fasse A, Nguyen TT, Erenstein O. Food security and the dynamics of wheat and maize value chains in Africa and Asia. Front Sustain Food Syst. 2021;4:617009. https://doi.org/10.3389/fsufs.2020.617009
  5. 5. Hossain F, Muthusamy V, Bhat JS, Zunjare RU, Kumar S, Prakash NR, et al. Maize breeding. In: Fundamentals of field crop breeding. Singapore: Springer Nature Singapore; 2022. pp. 221-58. https://doi.org/10.1007/978-981-16-9257-4_4
  6. 6. Garrido-Balam M, Chel-Guerrero L, Gallegos-Tintoré S, Castellanos-Ruelas A, Rodríguez-Canto W, Betancur-Ancona D. Nutritional characterization of quality protein maize (QPM) (Zea mays L.) protein concentrates. Food Humanity. 2023;1:1250-5. https://doi.org/10.1016/j.foohum.2023.09.022
  7. 7. Okunlola G, Badu-Apraku B, Ariyo O, Ayo-Vaughan M. The combining ability of extra-early maturing quality protein maize (Zea mays) inbred lines and the performance of their hybrids in Striga-infested and low-nitrogen environments. Front Sustain Food Syst. 2023;7:1238874. https://doi.org/10.3389/fsufs.2023.1238874
  8. 8. Sakran RM, Ghazy MI, Rehan M, Alsohim AS, Mansour E. Molecular genetic diversity and combining ability for some physiological and agronomic traits in rice under well-watered and water-deficit conditions. Plants. 2022;11:702. https://doi.org/10.3390/plants11050702
  9. 9. Iqbal J, Shinwari ZK, Rabbani MA, Khan SA. Genetic divergence in maize (Zea mays L.) germplasm using quantitative and qualitative traits. Pak J Bot. 2015;47:227-38.
  10. 10. Kasoma C, Shimelis H, Laing MD, Shayanowako AI, Mathew I. Revealing the genetic diversity of maize (Zea mays L.) populations by phenotypic traits and DArTseq markers for variable resistance to fall armyworm. Genet Resour Crop Evol. 2021;68:243-59. https://doi.org/10.1007/s10722-020-00982-9
  11. 11. Owusu G, Nyadanu D, Obeng-Antwi K, Amoah RA, Danso F, Amissah S. Estimating gene action, combining ability and heterosis for grain yield and agronomic traits in extra-early maturing yellow maize single-crosses under three agro-ecologies of Ghana. Euphytica. 2017;213:287. https://doi.org/10.1007/s10681-017-2081-3
  12. 12. Mathiang EA, Sa KJ, Park H, Kim YJ, Lee JK. Genetic diversity and population structure of normal maize germplasm collected in South Sudan revealed by SSR markers. Plants. 2022;11:2787. https://doi.org/10.3390/plants11202787
  13. 13. Kamara MM, Mansour E, Khalaf AEA, Eid MAM, Hassanin AA, Abdelghany AM. Molecular diversity and combining ability in newly developed maize inbred lines under low-nitrogen conditions. Life. 2024;14(5):641. https://doi.org/10.3390/life14050641
  14. 14. Panse VG, Sukhatme PV. Statistical methods for agricultural workers. New Delhi: ICAR; 1967. p. 359.
  15. 15. Falconer DS, Mackay TFC. Introduction to quantitative genetics. 4th edition. Harlow, Essex, UK: Longmans Green; 1996.
  16. 16. Rohlf FJ. NTSYS-pc: Numerical taxonomy and multivariate analysis system (Version 1.70). Setauket, NY: Exeter Software; 1993.
  17. 17. Teja KV, Raju KK, Reddy KR, Sil P, Rao MS, Gupta VK. Genetic evaluation of heterosis and combining ability of quality protein maize (Zea mays L.) hybrids under terminal heat stress conditions. Agric Sci Dig. 2024;44(5):806-15. https://doi.org/10.18805/ag.D-6027
  18. 18. Reddyyamini B, Reddy KH, Reddy VLN, Babu PR, Sudhakar P. Transgressive segregation for yield and its component traits in rice (Oryza sativa L.). Int J Curr Microbiol Appl Sci. 2019;8(6):2450-5. https://doi.org/10.20546/ijcmas.2019.806.292
  19. 19. Keerthana D, Haritha T, Sudhir Kumar I, Ramesh D. Molecular diversity in maize inbred lines for Turcicum leaf blight resistance using simple sequence repeats (SSRs). Plant Sci Today. 2023;10(3):385-92. https://doi.org/10.14719/pst.2368
  20. 20. Pramanik K, Kumari M, Sahu GS, Acharya GC, Tripathy P, Dash M. Assessment of transgressive segregants for yield and its component traits in French bean (Phaseolus vulgaris L.). Legume Res. 2024;47(5):695-704. https://doi.org/10.18805/LR-5301
  21. 21. Sneha S, Sheela KRVS, Ravikesavan R, Selvakumar T, Prasad VBR. Genomic insights into maize: advanced techniques for analyzing diversity and enhancing crop traits. Plant Sci Today. 2025;12(1):1-12. https://doi.org/10.14719/pst.4011
  22. 22. Chňapek M, Balážová Ž, Špaleková A. Genetic diversity of maize resources revealed by different molecular markers. Genet Resour Crop Evol. 2024;71:4685-703. https://doi.org/10.1007/s10722-024-01908-5
  23. 23. Kumari A, Sinha S, Rashmi K, Mandal SS, Sahay S. Genetic diversity analysis in maize (Zea mays L.) using SSR markers. J Pharmacogn Phytochem. 2018;7:1116-20.
  24. 24. Li C, Irfan M, Zhang C, Lin F. Genetic diversity analysis of maize varieties based on SSR markers. Res J Biotechnol. 2014;9(6):48.
  25. 25. Jegadeeswari V, Padmadevi K, Vijayalatha KR, Suresh J. Assessment of polyclonal derivatives for morphological traits and hybridity analysis using SSR markers in cocoa (Theobroma cacao L.). Plant Sci Today. 2025;12(1):1-8. https://doi.org/10.14719/pst.6854
  26. 26. Babu BK, Pooja P, Bhatt JC, Agrawal PK. Characterization of Indian and exotic quality protein maize (QPM) and normal maize (Zea mays L.) inbreds using simple sequence repeat (SSR) markers. Afr J Biotechnol. 2012;11(41):9691-700. https://doi.org/10.5897/AJB11.2776
  27. 27. Kumar A, Jangid PP, Marimuthu S, Gurav AM, Srikanth N, Mangal AK. Identification and authentication of Agnimantha plant species used in Ayurveda on the basis of anatomical and molecular phylogenetic analysis. Plant Sci Today. 2023;10(4):26-38. https://doi.org/10.14719/pst.2180
  28. 28. Sathua SK, Shahi JP, Mahato A, Gayatonde V, Kumar P. Molecular diversity analysis of maize (Zea mays L.) inbreds using SSR markers. Electron J Plant Breed. 2018;9(3):1122-9. https://doi.org/10.5958/0975-928X.2018.00140.0
  29. 29. Ahamad A, Singh SP, Prasad LC, Prasad R, Thakur P. Identification of superior transgressive segregants in F₂ and F₃ populations of wheat (Triticum aestivum L.) for yield and its contributing traits. Electron J Plant Breed. 2022;13(1):56-61. https://doi.org/10.37992/2022.1301.01
  30. 30. Jambhale VM, Pawar SV, Raut VK. Assessment of molecular diversity in maize genotypes (Zea mays L.) through SSR markers. Int Res J Eng Technol. 2020;7(1):800.

Downloads

Download data is not yet available.