Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Detoxifying enzyme response in Leucinodes orbonalis under thermal and insecticide stress

DOI
https://doi.org/10.14719/pst.8467
Submitted
23 March 2025
Published
29-10-2025

Abstract

The eggplant shoot and fruit borer (Leucinodes orbonalis) is a major pest of brinjal, causing significant yield losses due to increasing insecticide resistance. This study investigates the impact of sub-lethal doses (LD₃₀) of spinetoram, tetraniliprole and emamectin benzoate, combined with temperature variations (29 and 32 °C), on detoxifying enzyme activities in L. orbonalis larvae. Insecticide exposure significantly enhanced the activities of carboxylesterase (1.34- to 1.45-fold), glutathione S-transferase (1.73- to 1.86-fold) and cytochrome P450 (up to 2.6-fold) compared to the controls, with tetraniliprole inducing the highest responses. Thermal stress at 32 °C further amplified carboxylesterase and glutathione S-transferase activities compared to 29 °C, indicating enhanced detoxification under high temperature conditions. Larvae failed to survive at 22 and 37 °C, limiting enzymatic analysis to moderate temperatures. Among the plant extracts tested, Nyctanthes arbor-tristis (500 ppm) markedly increased cytochrome P450 activity, suggesting its potential as a synergist for resistance management. These findings highlight the role of detoxifying enzymes in mediating insecticide resistance and thermal resilience in L. orbonalis. Integrating biochemical markers into resistance monitoring and leveraging plant-derived compounds could improve sustainable pest management strategies to address challenges posed by resistance and climate variability.

References

  1. 1. Raju SV, Bar UK, Shanker U, Kumar S. Scenario of infestation and management of eggplant shoot and fruit borer, L. orbonalis Guen. Resistant Pest Management Newsletter. 2007;16(2):14-6.
  2. 2. Gautam M, Kafle S, Regmi B, Thapa G, Paudel S. Management of brinjal fruit and shoot borer (Leucinodes orbonalis Guenee) in Nepal. Acta Scientific Agriculture. 2019;3(9):188-95. https://doi.org/10.31080/ASAG.2019.03.0632
  3. 3. Hawkins NJ, Bass C, Dixon A, Neve P. The evolutionary origins of pesticide resistance. Biological Reviews. 2019;94(1):135-55. https://doi.org/10.1111/brv.12440
  4. 4. Bass C, Nauen R. The molecular mechanisms of insecticide resistance in aphid crop pests. Insect Biochemistry and Molecular Biology. 2023;156:103937. https://doi.org/10.1016/j.ibmb.2023.103937
  5. 5. Capinera JL, editor. Encyclopedia of entomology. Springer Science & Business Media; 2008. https://doi.org/10.1007/978-1-4020-6359-6
  6. 6. Zraket CA, Barth JL, Heckel DG, Abbott AG. Genetic linkage mapping with restriction fragment length polymorphisms in the tobacco budworm, Heliothis virescens. In: Hagedorn HH, Hildebrand JG, Kidwell MG, Law JH, editors. Molecular insect science. Boston (MA): Springer; 1990. https://doi.org/10.1007/978-1-4899-3668-4_2
  7. 7. Guo L, Su M, Liang P, Li S, Chu D. Effects of high temperature on insecticide tolerance in whitefly Bemisia tabaci (Gennadius) Q biotype. Pesticide Biochemistry and Physiology. 2018;150:97-104. https://doi.org/10.1016/j.pestbp.2018.07.007
  8. 8. Yu SJ. Purification and characterization of glutathione transferases from five phytophagous Lepidoptera. Pesticide Biochemistry and Physiology. 1989;35(1):97-105. https://doi.org/10.1016/0048-3575(89)90107-7
  9. 9. Gordon CJ. Temperature and toxicology: an integrative, comparative, and environmental approach. CRC Press; 2005. https://doi.org/10.1201/9781420037906
  10. 10. Kranthi KR. Insecticide resistance-monitoring, mechanisms and management manual. Nagpur: Central Institute for Cotton Research; 2005.
  11. 11. Abbott WS. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology. 1925;18(2):265-7. https://doi.org/10.1093/jee/18.2.265a
  12. 12. Finney DJ. Probit analysis. Cambridge University Press; 1971.
  13. 13. Devonshire AL, Moores GD. A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate and pyrethroid resistance in peach-potato aphids (Myzus persicae). Pesticide Biochemistry and Physiology. 1982;18(2):235-46. https://doi.org/10.1016/0048-3575(82)90110-9
  14. 14. Eziah VY, Rose HA, Wilkes M, Clift AD. Biochemical mechanisms of insecticide resistance in the diamondback moth (Plutella xylostella L.) (Lepidoptera: Yponomeutidae) in the Sydney region, Australia. Australian Journal of Entomology. 2009;48(4):321-7. https://doi.org/10.1111/j.1440-6055.2009.00723.x
  15. 15. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry. 1974;249(22):7130-9. https://doi.org/10.1016/S0021-9258(19)42083-8
  16. 16. Zhang S, Zhang X, Shen J, Li D, Wan H, You H, et al. Cross-resistance and biochemical mechanisms of resistance to indoxacarb in the diamondback moth, Plutella xylostella. Pesticide Biochemistry and Physiology. 2017;140:85-9. https://doi.org/10.1016/j.pestbp.2017.06.011
  17. 17. Bessey OA, Lowry OH, Brock MJ. A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. Journal of Biological Chemistry. 1946;164:321-9. https://doi.org/10.1016/S0021-9258(18)43072-4
  18. 18. Bilal M, Freed S, Ashraf MZ, Zaka SM, Khan MB. Activity of acetylcholinesterase and acid and alkaline phosphatases in different insecticide-treated Helicoverpa armigera (Hübner). Environmental Science and Pollution Research. 2018;25(2):903-10. https://doi.org/10.1007/s11356-018-2394-3
  19. 19. Lowry O, Rosebrough N, Farr AL, Randall R. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry. 1951;193(1):265-75. https://doi.org/10.1016/S0021-9258(19)52451-6
  20. 20. Duncan DB. Multiple range and multiple F test. Biometrics. 1955;11:1-42. https://doi.org/10.2307/3001478
  21. 21. Abd El-Aziz NM, Shaurub EH. Sub-lethal effects of spinetoram on the activities of some detoxifying enzymes in the black cutworm Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae). African Entomology. 2014;22(1):136-43. https://doi.org/10.4001/003.022.0101
  22. 22. Liu ZK, Li XL, Tan XF, Yang MF, Idrees A, Liu JF, et al. Sublethal effects of emamectin benzoate on fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Agriculture. 2022;12(7):959. https://doi.org/10.3390/agriculture12070959
  23. 23. Ismail SM. Effect of sublethal doses of some insecticides and their role on detoxication enzymes and protein content of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Bulletin of the National Research Centre. 2020;44(1):1-6. https://doi.org/10.1186/s42269-020-00294-z
  24. 24. Kumar S, Suby SB, Vasmatkar P, Nebapure SM, Kumar N, Mahapatro GK. Influence of temperature on insecticidal toxicity and detoxifying enzymes to Spodoptera frugiperda. Phytoparasitica. 2023;51:533-45. https://doi.org/10.1007/s12600-023-01058-x
  25. 25. Deutsch CA, Tewksbury JJ, Tigchelaar M, Battisti DS, Merrill SC, Huey RB, et al. Increase in crop losses to insect pests in a warming climate. Science. 2018;361(6405):916-9. https://doi.org/10.1126/science.aat3466
  26. 26. Montgomery JC, Macdonald JA. Effects of temperature on nervous system: implications for behavioral performance. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 1990;259(2):R191-6. https://doi.org/10.1152/ajpregu.1990.259.2.R191
  27. 27. Yu SJ. Purification and characterization of glutathione transferases from five phytophagous Lepidoptera. Pesticide Biochemistry and Physiology. 1989;35(1):97-105. https://doi.org/10.1016/0048-3575(89)90107-7
  28. 28. Jena K, Kar PK, Kausar Z, Babu CS. Effects of temperature on modulation of oxidative stress and antioxidant defenses in testes of tropical tasar silkworm Antheraea mylitta. Journal of Thermal Biology. 2013;38(4):199-204. https://doi.org/10.1016/j.jtherbio.2013.02.008
  29. 29. Tripathy MK, Khuntia S, Dash SS, Quadri S, Singh N. Compatibility of selected synergist with diamides and profenophos in controlling shoot and fruit borer (Leucinodes orbonalis) infesting brinjal in two localities of Odisha. Journal of Global Innovations in Agricultural Sciences. 2023;11(3):333-40. https://doi.org/10.22194/JGIAS/11.1120
  30. 30. Wu G, Miyata T, Kang CY, Xie LH. Insecticide toxicity and synergism by enzyme inhibitors in 18 species of pest insect and natural enemies in crucifer vegetable crops. Pest Management Science. 2007;63(5):500-10. https://doi.org/10.1002/ps.1361
  31. 31. Leong CS, Vythilingam I, Liew JWK, Wong ML, Wan-Yusoff WS, Lau YL. Enzymatic and molecular characterization of insecticide resistance mechanisms in field populations of Aedes aegypti from Selangor, Malaysia. Parasites & Vectors. 2019;12:1-17. https://doi.org/10.1186/s13071-019-3472-1
  32. 32. Keane P. The use of piperonyl butoxide in formulations for the control of pests of humans, domestic pets, and food animals. In: Piperonyl butoxide. Academic Press; 1999. p. 289-300. https://doi.org/10.1016/B978-012286975-4/50020-6
  33. 33. Niu G, Rupasinghe SG, Zangerl AR, Siegel JP, Schuler MA, Berenbaum MR. A substrate-specific cytochrome P450 monooxygenase, CYP6AB11, from the polyphagous navel orangeworm (Amyelois transitella). Insect Biochemistry and Molecular Biology. 2011;41(4):244-53. https://doi.org/10.1016/j.ibmb.2010.12.009
  34. 34. Bullangpoti V, Wajnberg E, Audant P, Feyereisen R. Antifeedant activity of Jatropha gossypifolia and Melia azedarach senescent leaf extracts on Spodoptera frugiperda (Lepidoptera: Noctuidae) and their potential use as synergists. Pest Management Science. 2012;68(9):1255-64. https://doi.org/10.1002/ps.3291
  35. 35. Hawkins NJ, Bass C, Dixon A, Neve P. The evolutionary origins of pesticide resistance. Biological Reviews. 2019;94(1):135-55. https://doi.org/10.1111/brv.12440

Downloads

Download data is not yet available.