Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Investigating the therapeutic potential of Celosia cristata via GC-MS characterization and in silico docking

DOI
https://doi.org/10.14719/pst.8478
Submitted
24 March 2025
Published
07-09-2025 — Updated on 29-09-2025
Versions

Abstract

Celosia cristata, an annual shrub belonging to the family Amaranthaceae, is widely cultivated in India for its vibrant flowers. This study investigates the GC-MS profiling and antibacterial activity of Celosia cristata flower extract. Antibacterial efficacy of the extracts was tested against Escherichia coli and Staphylococcus aureus using the agar well diffusion method at concentrations ranging from 10–50 µL. The extract exhibited moderate antibacterial activity, with inhibition zones of 10 –15 mm against E. coli. GC-MS analysis identified 25 major phytochemical constituents, namely Hentriacontane (19.52 %), Benzoic acid, 4-ethoxy-, ethyl ester (11.87 %), Heptacosanol (10.97 %), Cyclotetracosane (6.01 %) and Butane, 2-phenyl-3-(trimethylsilyloxy) (1.57 %). Many of these compounds are known for their antioxidant, antimicrobial and anti-inflammatory properties. Further, molecular docking studies revealed that diphenyl sulfone may have potential inhibitory activity against E. coli haemolysin E (1QOY). Collectively, these findings highlight the therapeutic potential of Celosia cristata in pharmaceutical applications and antimicrobial drug development.

References

  1. 1. Al Khafagi MFJ, Mohammed DY. Study antibacterial activity of crude Capparis spinosa L. extracts against Helicobacter pylori infection and determine their bioactive compounds. Iraq J Sci. 2023;64(2):503–12. https://doi.org/10.24996/ijs.2023.64.2.1
  2. 2. Arnao MB, Cano A, Acosta M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001;73(2):239–44. https://doi.org/10.1016/S0308-8146(00)00324-1
  3. 3. Awang Y, Shaharom AS, Mohamad RB, Selamat A. Chemical and physical characteristics of cocopeat-based media mixtures and their effects on the growth and development of Celosia cristata. Am J Agric Biol Sci. 2009;4(1):63–71. https://doi.org/10.3844/AJABSSP.2009.63.71
  4. 4. Balachandran A, Choi SB, Beata M M, Małgorzata J, Froemming GR, Lavilla CA Jr, et al. Antioxidant, wound healing potential and in silico assessment of naringin, eicosane and octacosane. Molecules. 2023;28(3):1043. https://doi.org/10.3390/molecules28031043
  5. 5. Bashir I, Pandey VK, Dar AH, Dash KK, Shams R, Mir SA, et al. Exploring sources, extraction techniques and food applications: a review on biocolors as next generation colorants. Phytochem Rev. 2024;23(4):1–26. https://doi.org/10.1007/s11101-023-09908-6
  6. 6. Dalawai D, Murthy HN, Dewir YH, Sebastian JK, Nag A. Phytochemical composition, bioactive compounds, and antioxidant properties of different parts of Andrographis macrobotrys Nees. Life. 2023;13(5):1166. https://doi.org/10.3390/life13051166
  7. 7. Dallakyan S, Olson AJ. Small molecule library screening by docking with PyRx. In: Chemical Biology: Methods and Protocols. Springer; 2014. p. 243–50. https://doi.org/10.1016/B978-0-12-822312-3.00019-9
  8. 8. Dobhal P, Agnihotri S, Ashfaqullah S, Tamta S. Effect of salicylic acid elicitor on antioxidant potential and chemical composition of in vitro raised plants of Berberis asiatica Roxb. ex DC. Nat Prod Res. 2023;37(18):3114–21. https://doi.org/10.1080/14786419.2022.2141737
  9. 9. Gaikwad KD, Ubale P, Khobragade R, Deodware S, Dhale P, Asabe MR, et al. Preparation, characterization and in vitro biological activities of new diphenylsulphone derived schiff base ligands and their Co(II) complexes. Molecules. 2022;27(23):8576. https://doi.org/10.3390/molecules27238576
  10. 10. Hatami A. Phytochemical profiling and antibacterial activities of Ziziphora tenuior root extracts: a molecular docking against VanA of vancomycin-resistant enterococci. 3 Biotech. 2024;14(9):217. https://doi.org/10.1007/s00284-021-02401-3
  11. 11. Hawar SN, Taha ZK, Hamied AS, Al Shmgani HS, Sulaiman GM, Elsilk SE. Antifungal activity of bioactive compounds produced by the endophytic fungus Paecilomyces sp. (JN227071.1) against Rhizoctonia solani. Int J Biomater. 2023;2023(1):2411555. https://doi.org/10.1155/2023/2411555
  12. 12. Hujjatusnaini N, Marshanda UT, Nirmalasari R. Morphological characteristics and evaluating bioactive compound extracts of Isotoma longiflora and Clitoria ternatea plants from Central Kalimantan as therapeutic agents. J Agron Tanam Trop. 2025;7(1):199–208. https://doi.org/10.31958/js.v13i2.3473
  13. 13. Ilodibia C, Chukwuma M, Okeke N, Adimonyemma R, Igboabuchi N, Akachukwu E. Growth and yield performance to plant density of Celosia argentea in Anambra State, Southeastern Nigeria. Int J Plant Soil Sci. 2016;12(5):1–5. https://doi.org/10.9734/JABB/2016/27922
  14. 14. Jabbar A, Sirajuddin M, Iqbal S, Tariq MI, Ahmad M. Exploration of antioxidant activities of potentially bioactive compounds in Trianthema portulacastrum herb: chemical identification and quantification by GC MS and HPLC. ChemistrySelect. 2019;4(3):925–35. https://doi.org/10.1002/slct.201803267
  15. 15. Kalaivani K, Senthil Nathan S, Stanley Raja V, Vasantha Srinivasan P. Physiological and biochemical alterations in Vigna radiata L. triggered by sesame derived elicitors as defense mechanism against Rhizoctonia and Macrophomina infestation. Sci Rep. 2023;13(1):13884. https://doi.org/10.1038/s41598-023-39660-y
  16. 16. Kalimuthu AK, Parasuraman P, Sivakumar P, Murugesan S, Arunachalam S, Pandian SRK, et al. In silico, in vitro screening of antioxidant and anticancer potentials of bioactive secondary metabolites from an endophytic fungus (Curvularia sp.) from Phyllanthus niruri L. Environ Sci Pollut Res. 2022;29(32):48908–25. https://doi.org/10.1007/s11356-022-19249-0
  17. 17. Karthika D, Chitra R, Irene Vethamoni P, Rajagopal B, Rajavel M. Methodology of micropropagation of elite genotype in lotus (Nelumbo nucifera) genotype Lakshmi. Int J Environ Clim Change. 2023;13(10):1909–15. https://doi.org/10.9734/ijecc/2023/v13i102848
  18. 18. Khan MI. Plant betalains: Safety, antioxidant activity, clinical efficacy, and bioavailability. Compr Rev Food Sci Food Saf. 2016;15(2):316–30. https://doi.org/10.1111/1541-4337.12185
  19. 19. Malomo S, Ore A, Yakubu M. In vitro and in vivo antioxidant activities of the aqueous extract of Celosia argentea leaves. Indian J Pharmacol. 2011;43(3):278–85. https://doi.org/10.4103/0253-7613.81519
  20. 20. Mehra M, Pasricha V, Gupta RK. Estimation of nutritional, phytochemical and antioxidant activity of seeds of musk melon (Cucumis melo) and water melon (Citrullus lanatus) and nutritional analysis of their respective oils. J Pharmacogn Phytochem. 2015;3(6):98–102. https://doi.org/10.2174/1573401318666220201113532
  21. 21. Muhallilin I, Aisyah SI, Sukma D. The diversity of morphological characteristics and chemical content of Celosia cristata plantlets due to gamma ray irradiation. Biodiversitas. 2019;20(3):862–66. https://doi.org/10.13057/biodiv/d201240
  22. 22. Minjares Fuentes R, Femenia A, Garau M, Meza Velázquez J, Simal S, Rosselló C. Ultrasound assisted extraction of pectins from grape pomace using citric acid: a response surface methodology approach. Carbohydr Polym. 2014;106:179–89. https://doi.org/10.1016/j.carbpol.2014.02.013
  23. 23. Murafuji T, Kitagawa K, Yoshimatsu D, Kondo K, Ishiguro K, Tsunashima R, et al. Heterocyclic bismuth carboxylates based on a diphenyl sulfone scaffold: synthesis and antifungal activity against Saccharomyces cerevisiae. Eur J Med Chem. 2013;63:531–35. https://doi.org/10.1016/j.ejmech.2013.02.036
  24. 24. Porat R, Shlomo E, Halevy AH. Horticultural techniques to improve Celosia plumosa growth for cut flowers. Sci Hortic. 1995;63(3–4):209–14. https://doi.org/10.1016/0304-4238(95)00811-7
  25. 25. Purbowati ISM, Syamsu K, Warsiki E, Sri H. Stabilitas senyawa fenolik dalam ekstrak dan nanokapsul kelopak bunga rosella pada berbagai variasi pH, suhu dan waktu. Agrointek. 2016;10(1):31–40. https://doi.org/10.21107/agrointek.v10i1.2023
  26. 26. Razz SA. Comprehensive overview of microalgae derived carotenoids and their applications in diverse industries. Algal Res. 2024;:103422. https://doi.org/10.1016/j.algal.2024.103422
  27. 27. Roon TSA, Klanrit P, Klanrit P, Thanonkeo P, Apiraksakorn J, Thanonkeo S, et al. Establishment of betalain producing cell line and optimization of pigment production in cell suspension cultures of Celosia argentea var. plumosa. Plants. 2024;13(22):3225. https://doi.org/10.3390/plants13223225
  28. 28. Singh AK, Kumar P, Rajput VD, Mishra SK, Tiwari KN, Singh AK, et al. Phytochemicals, antioxidant, anti inflammatory studies, and identification of bioactive compounds using GC–MS of ethanolic novel polyherbal extract. Appl Biochem Biotechnol. 2023;195(7):4447–68. https://doi.org/10.1007/s12010-023-04363-7
  29. 29. Singh T, Pandey VK, Dash KK, Zanwar S, Singh R. Natural bio colorant and pigments: sources and applications in food processing. J Agric Food Res. 2023;12:100628. https://doi.org/10.1016/j.jafr.2023.100628
  30. 30. Skanda S, Vijayakumar B. Antioxidant and anti inflammatory metabolites of a soil derived fungus Aspergillus arcoverdensis SSSIHL 01. Curr Microbiol. 2021;78(4):1317–23. https://doi.org/10.1007/s00284-021-02401-3
  31. 31. Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents (DESs) and their applications. Chem Rev. 2014;114(21):11060–82. https://doi.org/10.1021/cr300162p
  32. 32. Srivastava A, Rao LJM, Shivanandappa T. A novel cytoprotective antioxidant: 4 Hydroxyisophthalic acid. Food Chem. 2012;132(4):1959–65. https://doi.org/10.1016/j.foodchem.2011.12.032
  33. 33. Sulieman AME, Idriss H, Alshammari M, Almuzaini NA, Ibrahim NA, Dahab M, et al. Comprehensive in vitro evaluation of antibacterial, antioxidant, and computational insights into Blepharis ciliaris (L.) Bl Burtt from Hail Mountains, Saudi Arabia. Plants. 2024;13(24):3491. https://doi.org/10.3390/plants13243491
  34. 34. Tian W, Chen C, Lei X, Zhao J, Liang J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 2018;46(W1):W363–7. https://doi.org/10.1093/nar/gky473
  35. 35. Frolova N, Orlova A, Popova V, Bilova T, Frolov A. GC MS based metabolomics – Part 1: Gas chromatography mass spectrometry (GC MS) and its place in the plant metabolomics toolbox. J Integr Sci Nat Health. 2025;3(2) https://doi.org/10.18143/JISANH_V3I2_1022
  36. 36. Wang Y C, Chang Y C, Huang J W, Huang C L, Chen Y J, Hong C F. First report of plumed cockscomb (Celosia argentea var. plumosa) stem blight caused by Phytophthora nicotianae in Taiwan. Plant Dis. 2024;108(8):2583. https://doi.org/10.1094/PDIS-04-23-0667-PDN
  37. 37. Zeshan MQ, Ashraf M, Omer MO, Anjum AA, Ali MA, Najeeb M, et al. Antimicrobial activity of essential oils of Curcuma longa and Syzygium aromaticum against multiple drug resistant pathogenic bacteria. Trop Biomed. 2023;40(2):174–82.

Downloads

Download data is not yet available.