Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Empowering early detection of plant diseases in agriculture using artificial intelligence

DOI
https://doi.org/10.14719/pst.8493
Submitted
24 March 2025
Published
14-07-2025 — Updated on 24-07-2025
Versions

Abstract

Artificial Intelligence (AI) is revolutionizing plant disease diagnosis by providing transformative solutions to the challenges posed by agricultural diseases. AI-driven algorithms significantly reduce the time required for disease identification, enabling timely and precise control measures. These interventions help prevent the widespread proliferation of pathogens, mitigate crop losses and minimize economic damage. The integration of machine learning and deep learning particularly convolutional neural networks (CNNs) with computer vision systems enhances the precision, scalability and efficiency of disease monitoring. AI-powered tools offer real-time surveillance by capturing images of diseased leaves and generating data-driven insights, thereby facilitating targeted treatment applications while reducing resource wastage and environmental impact. Furthermore, the application of AI-powered mobile apps provides farmers with instant, field-level support to take preventive actions during the early stages of disease development. These technologies enable farmers to make informed, evidence-based decisions, optimize their agricultural practices and enhance crop yield and quality. Ultimately, AI plays a pivotal role in boosting agricultural productivity, ensuring food security and promoting both economic resilience and environmental sustainability. This review highlights recent advancements in machine learning algorithms, deep learning models especially CNNs and the role of mobile applications in early disease detection in agriculture.

References

  1. 1. Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A. The global burden of pathogens and pests on major food crops. Nat Ecol Evol. 2019;3(3):430–39. https://doi.org/10.1038/s41559-018-0793-y
  2. 2. Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Statistical Brief [Internet]. Rome: FAO; 2023 [cited 2025 Mar 25]. Available from: https://openknowledge.fao.org/bitstreams/df90e6cf-4178-4361-97d4-5154a9213877/download
  3. 3. Ray DK, Mueller ND, West PC, Foley JA. Yield trends are insufficient to double global crop production by 2050. PloS One. 2013;8(6):e66428. https://doi.org/10.1371/journal.pone.0066428
  4. 4. Nazarov PA, Baleev DN, Ivanova MI, Sokolova LM, Karakozova MV. Infectious plant diseases: etiology, current status, problems and prospects in plant protection. Acta Naturae. 2020;12(3):46–59. https://doi.org/10.32607/actanaturae.11026
  5. 5. Rastogi P, Dua S, Dagar V. Early disease detection in plants using CNN. Procedia Comput Sci. 2024;235:3468–78. https://doi.org/10.1016/j.procs.2024.04.328
  6. 6. Kliestik T, Kral P, Bugaj M, Durana P. Generative artificial intelligence of things systems, multisensory immersive extended reality technologies, and algorithmic big data simulation and modelling tools in digital twin industrial metaverse. Equilibrium Q J Econ Econ Policy. 2024;19(2):429–61. https://doi.org/10.24136/eq.2024.014
  7. 7. Russell SJ, Norvig P. Artificial intelligence: A modern approach. 4th ed. Boston: Pearson; 2016.
  8. 8. Minofar B, Milcic N, Marousek J, Gavurova B, Marouskova A. Understanding the molecular mechanisms of interactions between biochar and denitrifiers in N₂O emissions reduction: pathway to more economical and sustainable fertilizers. Soil Tillage Res. 2025;248:106405. https://doi.org/10.1016/j.still.2024.106405
  9. 9. Marousek J, Strunecky O, Vanickova R, Midelashvili E, Minofar B. Techno-economic considerations on latest trends in biowaste valuation. Syst Microbiol Biomanuf. 2024;4(2):598–606. https://doi.org/10.1007/s43393-023-00159-4
  10. 10. Kumar A, Kumar P, Suma K. Deep learning for automated diagnosis of plant diseases: A technological approach. J Electr Syst. 2024;20(1). https://doi.org/10.52783/jes.1234
  11. 11. Yoganarasimhan H. Search personalization using machine learning. Manage Sci. 2020;66(3):1045–70. https://doi.org/10.1287/mnsc.2018.3255
  12. 12. Panigrahi KP, Das H, Sahoo AK, Moharana SC, editors. Maize leaf disease detection and classification using machine learning algorithms. In: Satapathy SC, Bhateja V, Das S, Udgata SK, editors. Progress in computing, analytics and networking: proceedings of ICCAN 2019; 2019 Mar 30–31; Bhubaneswar, India. Singapore: Springer; 2020. https://doi.org/10.1007/978-981-15-2414-1_66
  13. 13. Pukkela P, Borra S. Machine learning based plant leaf disease detection and severity assessment techniques: state-of-the-art. In: Liao B, editor. Classification in BioApps: automation of decision making. Cham (Switzerland): Springer International Publishing; 2017. p. 199–226. https://doi.org/10.1007/978-3-319-65981-7_8
  14. 14. Xu J, Chen J, You S, Xiao Z, Yang Y, Lu J. Robustness of deep learning models on graphs: A survey. AI Open. 2021;2:69–78. https://doi.org/10.1016/j.aiopen.2021.05.002
  15. 15. Ma J, Du K, Zheng F, Zhang L, Gong Z, Sun Z. A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network. Comput Electron Agric. 2018;154:18–24. https://doi.org/10.1016/j.compag.2018.08.048
  16. 16. Zhang N, Ding S, Zhang J, Xue Y. An overview on restricted Boltzmann machines. Neurocomputing. 2018;275:1186–99. https://doi.org/10.1016/j.neucom.2017.09.065
  17. 17. Madhuri J, Reddy BR, Kalnoor G, Indiramma M, Nagarathna N. Optimizing Crop Recommendations with Improved Deep Belief Networks: A Multimodal Approach. IEEE Access. 2025;13:1–1. https://doi.org/10.1109/ACCESS.2025.3542284
  18. 18. Zilvan V, Ramdan A, Suryawati E, Kusumo RBS, Krisnandi D, Pardede HF, editors. Denoising convolutional variational autoencoders-based feature learning for automatic detection of plant diseases. In: Proceedings of the 3rd International Conference on Informatics and Computational Sciences (ICICoS); 2019 Oct 29–30; Semarang, Indonesia. Piscataway (NJ): IEEE; 2019. p. 1–6. https://doi.org/10.1109/ICICoS48119.2019.8982494
  19. 19. Gupta L, Vyas V. Plant disease classification using AI–Spl deep learning and machine learning. 3C Tecnología: Glosas de innovación aplicadas a la pyme. 2023;12(2):65–76. https://doi.org/10.17993/3ctecno.2023.v12n2e44.65-76
  20. 20. Too EC, Yujian L, Njuki S, Yingchun L. A comparative study of fine-tuning deep learning models for plant disease identification. Comput Electron Agric. 2019;161:272–79. https://doi.org/10.1016/j.compag.2018.03.032
  21. 21. Mohameth F, Bingcai C, Sada KA. Plant disease detection with deep learning and feature extraction using plant village. J Comput Commun. 2020;8(6):10–22. https://doi.org/10.4236/jcc.2020.86002
  22. 22. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27–30; Las Vegas (NV): IEEE; 2016. p. 2818–26. . https://doi.org/10.1109/CVPR.2016.308
  23. 23. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27–30; Las Vegas (NV): IEEE; 2016. p. 770–78. https://doi.org/10.1109/CVPR.2016.90
  24. 24. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NeurIPS 2012); 2012 Dec 3–8; Lake Tahoe (CA): NeurIPS Foundation; 2012. p. 1097–1105. https://doi.org/10.1145/3065386
  25. 25. Hijazi S, Kumar R, Rowen C. Using convolutional neural networks for image recognition. San Jose (CA): Cadence Design Systems Inc.; 2015.
  26. 26. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44. https://doi.org/10.1038/nature14539
  27. 27. Tan M, Le Q, editors. EfficientNet: Rethinking model scaling for convolutional neural networks. In: Proceedings of the 36th International Conference on Machine Learning (ICML); 2019 Jun 9–15; Long Beach (CA): PMLR; 2019. p. 6105–14. https://doi.org/10.48550/arXiv.1905.11946
  28. 28. Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. J Big Data. 2019;6(1):1–48. https://doi.org/10.1186/s40537-019-0197-0
  29. 29. Goodfellow I, Bengio Y, Courville A. Deep learning. Healthc Inform Res. 2016;22(4):351–54. https://doi.org/10.4258/hir.2016.22.4.351
  30. 30. Abadi M. TensorFlow: learning functions at scale. In: Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming (ICFP); 2016 Sep 18–24; Nara, Japan. New York (NY): Association for Computing Machinery; 2016. p. 1–1. https://doi.org/10.1145/2951913.2976746
  31. 31. Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real‑time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell. 2016;39(6):1137–49. https://doi.org/10.1109/TPAMI.2016.2577031
  32. 32. He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV); 2017 Oct 22–29; Venice (Italy). Piscataway (NJ): IEEE Computer Society; 2017. p. 2980–88. https://doi.org/10.1109/ICCV.2017.322
  33. 33. Kurmi Y, Gangwar S. A leaf image localization based algorithm for different crops disease classification. Information Process Agric. 2022;9(3):456–74 . https://doi.org/10.1016/j.inpa.2021.03.001
  34. 34. Ale L, Sheta A, Li L, Wang Y, Zhang N, editors. Deep learning based plant disease detection for smart agriculture. In: Proceedings of the 2019 IEEE Globecom Workshops (GC-Wkshps); 2019 Dec; Piscataway (NJ): IEEE; 2019. p. 1–6. https://doi.org/10.1109/GCWkshps45667.2019.9024439
  35. 35. Gregor K, LeCun Y. Learning fast approximations of sparse coding. In: Proceedings of the 27th International Conference on Machine Learning (ICML); 2010 Jun 21–24; Haifa (Israel). New York (NY): Omnipress; 2010. p. 399–406.
  36. 36. Ranzato MA, Mnih V, Susskind JM, Hinton GE. Modeling natural images using gated MRFs. IEEE Trans Pattern Anal Mach Intell. 2013;35(9):2206–22. https://doi.org/10.1109/TPAMI.2013.29
  37. 37. Krause J, Sapp B, Howard A, Zhou H, Toshev A, Duerig T, et al., editors. The unreasonable effectiveness of noisy data for fine-grained recognition. In: Computer Vision–ECCV 2016: Proceedings of the 14th European Conference on Computer Vision; 2016 Oct 11–14; Amsterdam, The Netherlands. Cham: Springer; 2016. p. 301–20. https://doi.org/10.1007/978-3-319-46487-9_19
  38. 38. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A simple way to prevent neural networks from overfitting. J Mach Learn. 2014;15(1):1929–58. https://doi.org/10.1007/978-981-15-0135-7_3
  39. 39. Islam M, Dinh A, Wahid K, Bhowmik P. Detection of potato diseases using image segmentation and multiclass support vector machine. In: Proceedings of the 30th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE); 2017 Apr 30–May 3; Windsor (ON), Canada. Piscataway (NJ): IEEE; 2017. p. 1–4. https://doi.org/10.1109/CCECE.2017.7946594
  40. 40. Micheli A. Neural network for graphs: A contextual constructive approach. IEEE Trans Neural Netw. 2009;20(3):498–511. https://doi.org/10.1109/TNN.2008.2010350
  41. 41. McMahan B, Moore E, Ramage D, Hampson S, Arcas BA. McMahan B, Moore E, Ramage D, Hampson S, Arcas BA. Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS); 2017 Apr 20–22; Fort Lauderdale (FL), USA. p. 1273–82. https://doi.org/10.5555/3305381.3305516
  42. 42. Yang Q, Liu Y, Chen T, Tong Y. Federated machine learning. ACM Trans Intell Syst Technol. 2019;10(2):1–19. https://doi.org/10.1145/3298981
  43. 43. Mohanty SP, Hughes DP, Salathe M. Using deep learning for image-based plant disease detection. Front Plant Sci. 2016;7:1419. https://doi.org/10.3389/fpls.2016.01419
  44. 44. Carranza-Rojas J, Goeau H, Bonnet P, Mata-Montero E, Joly A. Going deeper in the automated identification of Herbarium specimens. BMC Evol Biol. 2017;17:1–14. https://doi.org/10.1186/s12862-017-1014-z
  45. 45. Sannakki SS, Rajpurohit VS, Nargund VB, Kulkarni P. Diagnosis and classification of grape leaf diseases using neural networks. In: Proceedings of the 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT); 2013 Jul 4–6; Tirunelveli, India. Piscataway (NJ): IEEE; 2013. p. 1–5. https://doi.org/10.1109/ICCCNT.2013.6726616
  46. 46. Makandar A, Halalli B. Image enhancement techniques using highpass and lowpass filters. Int J Comput Appl. 2015;109(14):12–25. https://doi.org/10.5120/19273-1004
  47. 47. Ell TA, Sangwine SJ. Hypercomplex Fourier transforms of color images. IEEE Trans Image Process. 2006;16(1):22–35. https://doi.org/10.1109/TIP.2006.884955
  48. 48. Camargo A, Smith J. An image-processing based algorithm to automatically identify plant disease visual symptoms. Biosyst Eng. 2009;102(1):9–21. https://doi.org/10.1016/j.biosystemseng.2008.09.030
  49. 49. Iqbal MA, Talukder KH. Detection of potato disease using image segmentation and machine learning. In: Proceedings of the International Conference on Wireless Communications Signal Processing and Networking (WiSPNET); 2020 Aug 4–6; Chennai, India. Piscataway (NJ): IEEE; 2020. p. 43–47. https://doi.org/10.1109/WiSPNET48689.2020.9198563
  50. 50. Yao Q, Guan Z, Zhou Y, Tang J, Hu Y, Yang B. Application of support vector machine for detecting rice diseases using shape and color texture features. In: Proceedings of the International Conference on Engineering Computation; 2009 Mar 17–19; Hong Kong, China. Piscataway (NJ): IEEE; 2009. p. 79–83. https://doi.org/10.1109/ICEC.2009.73
  51. 51. Huang W, Guan Q, Luo J, Zhang J, Zhao J, Liang D. New optimized spectral indices for identifying and monitoring winter wheat diseases. IEEE J Sel Top Appl Earth Obs Remote Sens. 2014;7(6):2516–24. https://doi.org/10.1109/JSTARS.2013.2294961
  52. 52. Sibiya M, Sumbwanyambe M. A computational procedure for the recognition and classification of maize leaf diseases out of healthy leaves using convolutional neural networks. Agri Eng. 2019;1(1):119–31. https://doi.org/10.3390/agriengineering1010009
  53. 53. Sugimura D, Mikami T, Yamashita H, Hamamoto T. Enhancing color images of extremely low light scenes based on RGB/NIR images acquisition with different exposure times. IEEE Trans Image Process. 2015;24(11):3586–97. https://doi.org/10.1109/TIP.2015.2448356
  54. 54. Srivastava AR, Venkatesan M, editors. Tea leaf disease prediction using texture-based image processing. In: Emerging Research in Data Engineering Systems and Computer Communications: Proceedings of CCODE 2019; 2019 Dec 21-22; Chennai, India. Singapore: Springer; 2020.
  55. 55. Whitmire CD, Vance JM, Rasheed HK, Missaoui A, Rasheed KM, Maier FW. Using machine learning and feature selection for alfalfa yield prediction. AI. 2021;2(1):71–88. https://doi.org/10.3390/ai2010006
  56. 56. hao J, Kechasov D, Rewald B, Bodner G, Verheul M, Clarke N, et al. Deep learning in hyperspectral image reconstruction from single RGB images—A case study on tomato quality parameters. Remote Sens. 2020;12(19):3258. https://doi.org/10.3390/rs12193258
  57. 57. Samal I, Bhoi TK, Pradhan AK, Mahanta DK. Plantix app: A success story of artificial intelligence in plant protection. Van Sangyan. 2023;10:24–44.
  58. 58. Mandal R, Lohar P, Wakalkar P. Crop Doctor A prediction model using machine learning algorithm. In: Proceedings of the 4th International Conference on Communication & Information Processing (ICCIP); 2022. 59. Li T, Fan Y, Li Y, Tarkoma S, Hui P. Understanding the long-term evolution of mobile app usage. IEEE Trans Mob Comput. 2021;22(2):1213–30. https://doi.org/10.1109/TMC.2021.3098664
  59. 60. Odilbekov F, Armoniene R, Henriksson T, Chawade A. Proximal phenotyping and machine learning methods to identify Septoria tritici blotch disease symptoms in wheat. Front Plant Sci. 2018;9:685. https://doi.org/10.3389/fpls.2018.00685
  60. 61. Ramcharan A, Baranowski K, McCloskey P, Ahmed B, Legg J, Hughes DP. Deep learning for image-based cassava disease detection. Front Plant Sci. 2017;8:1852. https://doi.org/10.3389/fpls.2017.01852
  61. 62. Patel D, Patel NI, Patel M, editors. Advancements in wheat disease detection: a comprehensive survey of techniques, challenges. In: Proceedings of the International Conference on Information and Communication Technology for Intelligent Systems; 2024 Mar 22-23; Ahmedabad, India. Singapore: Springer; 2024 [cited 2025 Apr 16]. p. 1-10. https://doi.org/10.1007/978-981-97-6684-0_51
  62. 63. Tian Y, Yang G, Wang Z, Li E, Liang Z. Detection of apple lesions in orchards based on deep learning methods of CycleGAN and YOLOV3-dense. J Sens. 2019;2019(1):7630926. https://doi.org/10.1155/2019/7630926
  63. 64. Raza S-e-A, Prince G, Clarkson JP, Rajpoot NM. Automatic detection of diseased tomato plants using thermal and stereo visible light images. PloS one. 2015;10(4):e0123262. https://doi.org/10.1371/journal.pone.0123262
  64. 65. Das S, Pattanayak S, Behera PR. Application of machine learning: A recent advancement in plant diseases detection. J Plant Prot Res. 2022:122–35.
  65. 66. Antonellis G, Gavras AG, Panagiotou M, Kutter BL, Guerrini G, Sander AC, et al. Shake table test of large-scale bridge columns supported on rocking shallow foundations. J Geotech Geoenviron Eng. 2015;141(5):04015009. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001284
  66. 67. Soliman MM, Kamal MH, Nashed MAE-M, Mostafa YM, Chawky BS, Khattab D, et al. Violence recognition from videos using deep learning techniques. In: Proceedings of the 2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS); 2019 Dec 9–11; Cairo, Egypt. New York: IEEE; 2019 [cited 2025 Apr 16]. p. 1–6. Available from: https://doi.org/10.1109/ICICIS46948.2019.9014714
  67. 68. Szymak P, Piskur P, Naus K. The effectiveness of using a pretrained deep learning neural networks for object classification in underwater video. Remote Sens. 2020;12(18):3020. https://doi.org/10.3390/rs12183020
  68. 69. Wang G, Sun Y, Wang J. Automatic image-based plant disease severity estimation using deep learning. Comput Intell Neurosci. 2017;2017(1):2917536. https://doi.org/10.1155/2017/2917536
  69. 70. Alhwaiti Y, Khan M, Asim M, Siddiqi MH, Ishaq M, Alruwaili M. Leveraging YOLO deep learning models to enhance plant disease identification. Sci Rep. 2025;15(1):7969. https://doi.org/10.1038/s41598-025-88432-4
  70. 71. Chollet F, editor. Xception: Deep learning with depthwise separable convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2017 Jul 21-26; Honolulu, HI, USA. Piscataway (NJ): IEEE; 2017. https://doi.org/10.1109/CVPR.2017.195
  71. 72. Mishra S, Singh A, Singh V, editors. Application of MobileNet-v1 for potato plant disease detection using transfer learning. 2021 Workshop on Algorithm and Big Data; 2021; New York, NY, USA. New York: Association for Computing Machinery; 2021. https://doi.org/10.1145/3465735.3465745
  72. 73. Saleem MH, Potgieter J, Arif KM. Plant disease classification: A comparative evaluation of convolutional neural networks and deep learning optimizers. Plants. 2020;9(10):1319. https://doi.org/10.3390/plants9101319
  73. 74. Wang DaWei WD, Deng LiMiao DL, Ni JianGong NJ, Gao JiYue GJ, Zhu HongFei ZH, Han ZhongZhi HZ. Recognition pest by image-based transfer learning. J Phys Conf Ser. 2019;1187:042027. https://doi.org/10.1088/1742-6596/1187/4/042027
  74. 75. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, et al., editors. Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia; 2014 Nov 3-7; Orlando, FL, USA. New York: ACM; 2014. https://doi.org/10.1145/2647868.2654889
  75. 76. Chen T, Li M, Li Y, Lin M, Wang N, Wang M, et al. MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint arXiv:1512.01274. 2015 Dec 3.
  76. 77. Chen W-L, Lin Y-B, Ng F-L, Liu C-Y, Lin Y-W. RiceTalk: Rice blast detection using Internet of Things and artificial intelligence technologies. IEEE Internet Things J. 2019;7(2):1001–10. https://doi.org/10.1109/JIOT.2019.2947624
  77. 78. Ai Y, Sun C, Tie J, Cai X. Research on recognition model of crop diseases and insect pests based on deep learning in harsh environments. IEEE Access. 2020;8:171686–93. https://doi.org/10.1109/ACCESS.2020.3025325
  78. 79. Jiang P, Chen Y, Liu B, He D, Liang C. Real-time detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks. IEEE Access. 2019;7:59069–80. https://doi.org/10.1109/ACCESS.2019.2914929
  79. 80. Zeng Q, Ma X, Cheng B, Zhou E, Pang W. Gans-based data augmentation for citrus disease severity detection using deep learning. IEEE Access. 2020;8:172882–91. https://doi.org/10.1109/ACCESS.2020.3025196
  80. 81. Li W, Shen Z, Liu X, Wang M, Ma C, Ding C, Cao J, et al. Representative kernels-based CNN for faster transmission in federated learning. IEEE Trans Mob Comput. 2024;23(12):13062–75. https://doi.org/10.1109/TMC.2024.3423448
  81. 82. Ramadan ST, Sakib T, Rahat MA, Mosharrof S. Cyclegan-based data augmentation with CNN and vision transformers (ViT) models for improved maize leaf disease classification. In: Proceedings of the 2023 IEEE 64th International Scientific Conference on Information Technology and Management Science of Riga Technical University (ITMS); 2023. p. 1–6.
  82. 83. Nazir T, Iqbal MM, Jabbar S, Hussain A, Albathan M. EfficientPNet—an optimized and efficient deep learning approach for classifying disease of potato plant leaves. Agric. 2023;13(4):841. https://doi.org/10.3390/agriculture13040841
  83. 84. Jaware TH, Badgujar RD, Patil PG. Crop disease detection using image segmentation. World J Sci Technol. 2012;2(4):190–4.
  84. 85. Orillo JW, Cruz JD, Agapito L, Satimbre PJ, Valenzuela I. Identification of diseases in rice plant (Oryza sativa) using back propagation artificial neural network. In: Proceedings of the 2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM); 2014 Nov 12; Cebu City, Philippines. Piscataway (NJ): IEEE; 2014. p. 1–6. https://doi.org/10.1109/HNICEM.2014.7016248
  85. 86. Gavhale KR, Gawande U. An overview of the research on plant leaves disease detection using image processing techniques. IOSR J Comput Eng. 2014;16(1):10–16. https://doi.org/10.9790/0661-16111016
  86. 87. Renugambal K, Senthilraja B. Application of image processing techniques in plant disease recognition. Int J Eng Res Technol. 2015;4(3):919–23. https://doi.org/10.17577/IJERTV4IS030919
  87. 88. Biswas S, Jagyasi B, Singh BP, Lal M. Severity identification of potato late blight disease from crop images captured under uncontrolled environment. IEEE Canada International Humanitarian Technology Conference (IHTC). 2014;1–5. https://doi.org/10.1109/IHTC.2014.7147519
  88. 89. Chouhan SS, Kaul A, Singh UP, Jain S. Bacterial foraging optimization based radial basis function neural network (BRBFNN) for identification and classification of plant leaf diseases: An automatic approach towards plant pathology. IEEE Access. 2018;6:8852-63. https://doi.org/10.1109/ACCESS.2018.2800685
  89. 90. Arivazhagan S, Shebiah RN, Ananthi S, Varthini SV. Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features. Agri Eng Int: CIGR J. 2013;15(1):211–17.
  90. 91. Liu C, Han J, Chen B, Mao J, Xue Z, Li S. A novel identification method for apple (Malus domestica Borkh.) cultivars based on a deep convolutional neural network with leaf image input. Symmetry. 2020;12(2):217. https://doi.org/10.3390/sym12020217
  91. 92. Gaikwad D, Karande K, Deshpande H. Pomegranate fruit diseases identification and grading. In: Proceedings of the International Conference on Communication and Signal Processing 2016 (ICCASP); 2016 Dec; International Conference on Communication and Signal Processing (ICCASP 2016), Advances in Intelligent Systems Research; 2016 Dec; p. 672–79. https://doi.org/10.2991/iccasp-16.2017.96
  92. 93. Al-Hiary H, Bani-Ahmad S, Reyalat M, Braik M, Alrahamneh Z. Fast and accurate detection and classification of plant diseases. Int J Comput Appl. 2011;17(1):31–38. https://doi.org/10.5120/975-1373
  93. 94. Mukherjee S. t‑SNE based feature extraction technique for multi‑layer perceptron neural network classifier. In: Proceedings of the 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT); 2017; Kerala, India. Piscataway (NJ): IEEE; 2017. p. 1–5.
  94. 95. Hue Y, Kim JH, Lee G, Choi B, Sim H, Jeon J, et al. Artificial intelligence plant doctor: plant disease diagnosis using GPT4-vision. Res Plant Dis. 2024;30(1):99–102. https://doi.org/10.5423/RPD.2024.30.1.99
  95. 96. Pethybridge SJ, Nelson SC. Leaf Doctor: A new portable application for quantifying plant disease severity. Plant Dis. 2015;99(10):1310–16. https://doi.org/10.1094/PDIS-03-15-0319-RE
  96. 97. Jain S, Sahni R, Khargonkar T, Gupta H, Verma OP, Sharma TK, et al. Automatic rice disease detection and assistance framework using deep learning and a Chatbot. Electronics. 2022;11(14):2110. https://doi.org/10.3390/electronics11142110
  97. 98. Mohapatra S, Tripathi R, Acharya P, Shahid M, Raghu S, Guru P, et al. NRRI 'riceXpert' APP: taking rice technologies in the doorstep of farmers [Internet]. 2018 [cited 2025 Jun 12]. Available from: https://icar-crri.in/icar-nrri-developed-mobile-app-ricexpert/#:~:text=The %20ICAR %2DNRRI %20'ricexpert',field %20and %20post %20harvest %20operations
  98. 99. Silva G, Tomlinson J, Onkokesung N, Sommer S, Mrisho L, Legg J, et al. Plant pest surveillance: from satellites to molecules. Emerg Top Life Sci. 2021;5(2):275–87. https://doi.org/10.1042/ETLS20200309
  99. 100. Al-Hiary H, Bani-Ahmad S, Reyalat M, Braik M, Alrahamneh Z. Fast and accurate detection and classification of plant diseases. Int J Comput Appl. 2011;17(1):31–38. https://doi.org/10.5120/975-1373

Downloads

Download data is not yet available.