Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Assessing long-term environmental risks of treated paper mill effluent via machine learning models: A review

DOI
https://doi.org/10.14719/pst.8514
Submitted
25 March 2025
Published
10-10-2025

Abstract

With growing water scarcity, treated paper mill effluent (TPME) is increasingly reused in agriculture for its water and nutrient value. However, long-term use raises concerns about pollutant buildup in soil and water, potentially harming ecosystems and human health. This review explores how machine learning (ML) models can help predict and manage the environmental impacts of TPME over time. The objective is to assess the effectiveness of various ML techniques such as decision trees, neural networks and ensemble models in forecasting changes in soil and water quality due to TPME irrigation. We reviewed recent studies, datasets and real-world applications to evaluate the performance and limitations of these models. Findings show that ML offers clear advantages over traditional models by handling complex, non-linear data patterns and improving prediction accuracy. However, challenges remain, including data availability, quality and the complexity of model interpretation. This review highlights the potential of ML as a powerful decision-support tool for sustainable wastewater management. It also emphasizes the need for better data practices and collaboration between environmental scientists, policymakers and technologists. By integrating ML into regulatory frameworks, the paper industry can move toward safer, more sustainable effluent reuse. In bridging technology with environmental science, this study supports the adoption of ML driven solutions to enhance long term environmental monitoring and promote greener practices in industrial water management.

References

  1. 1. Zhang L, Wang C, Hu W, Wang X, Wang H, Sun X, et al. Dynamic real-time forecasting technique for reclaimed water volumes in urban river environmental management. Environ Res. 2024;248:118267. https://doi.org/10.1016/j.envres.2024.118267
  2. 2. Miller T, Łobodzińska A, Kozlovska P, Lewita K, Kaczanowska O, Durlik I. Advancing water quality prediction: the role of machine learning in environmental science. Grail Sci. 2024;36:519–25. https://doi.org/10.36074/grail-of-science.16.02.2024.092
  3. 3. Granata F, de Marinis G. Machine learning methods for wastewater hydraulics. Flow Meas Instrum. 2017;57:1–9. https://doi.org/10.1016/j.flowmeasinst.2017.08.004
  4. 4. Schmidt L, Heße F, Attinger S, Kumar R. Challenges in applying machine learning models for hydrological inference: a case study for flooding events across Germany. Water Resour Res. 2020;56(5):e2019WR025924. https://doi.org/10.1029/2019wr025924
  5. 5. Kamali M, Khodaparast Z. Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicology and environmental safety. 2015 Apr 1;114:326-42. https://doi.org/10.1016/j.ecoenv.2014.05.005
  6. 6. McManners PJ. Increasing the impact of sustainability research—a new methodology. J Sustain Res. 2019;1(1):e190008. https://doi.org/10.20900/jsr20190008
  7. 7. Colla V, Pietrosanti C, Malfa E, Peters K. Environment 4.0: How digitalization and machine learning can improve the environmental footprint of the steel production processes. Matériaux Tech. 2020;108(5–6):507. https://doi.org/10.1051/mattech/2021007
  8. 8. Ines DM, Angel PS. A review of the use of machine learning techniques in eco-innovation research. In: 4th Int Conf Business Meets Technology. Valencia: Editorial Universitat Politècnica de València; 2022;244–54. https://doi.org/10.4995/BMT2022.2022.15550
  9. 9. Aria M, Cuccurullo C. bibliometrix: An R-tool for comprehensive science mapping analysis. J Informetr. 2017;11(4):959–75. https://doi.org/10.1016/j.joi.2017.08.007
  10. 10. Hermosilla D, Merayo N, Gascó A, Blanco Á. The application of advanced oxidation technologies to the treatment of effluents from the pulp and paper industry: a review. Environ Sci Pollut Res. 2015;22:168–91. https://doi.org/10.1007/s11356-014-3516-1
  11. 11. Crini G, Lichtfouse E. Wastewater treatment: an overview. Green adsorbents for pollutant removal. Environmental Chemistry for a Sustainable World. 2018;18:1–21. https://doi.org/10.1007/978-3-319-92111-2_1
  12. 12. Ouasfi N, Sabbar E, Khamliche L. Enhancing the water quality of treated effluents from wastewater treatment plants by mitigating emerging pollutants. All Sci Abstr. 2023;1(5):6. https://doi.org/10.59287/as-abstracts.1356
  13. 13. Gebrehanna M, Gordon RJ, Madani A, VanderZaag AC, Wood JD. Silage effluent management: a review. J Environ Manage. 2014;143:113–22. https://doi.org/10.1016/j.jenvman.2014.04.012
  14. 14. Shakil MSZ, Mostafa MG. Characterization of paper mill effluent and its impacts on the environment. J Chem Environ. 2023;2(1):109–22.https://doi.org/10.56946/jce.v2i01.135
  15. 15. Gu W, Li Y, Zhang X. Printing industry and the environment. Adv Mater Res. 2013;663:759–62. https://doi.org/10.4028/www.scientific.net/AMR.663.759
  16. 16. Gangwar AK, Prakash NT, Prakash R. Applicability of microbial xylanases in paper pulp bleaching: a review. Bioresources. 2014;9:3733–54. https://doi.org/10.15376/biores.9.2.3733-3754
  17. 17. Bagherzadeh F, Nouri AS, Mehrani M-J, Thennadil S. Prediction of energy consumption and evaluation of affecting factors in a full-scale WWTP using a machine learning approach. Process Saf Environ Prot. 2021;154:458–66. https://doi.org/10.1016/j.psep.2021.08.040
  18. 18. Maganathan T, Senthilkumar S, Balakrishnan V. Machine learning and data analytics for environmental science: a review, prospects and challenges. IOP Conf Ser Mater Sci Eng. 2020:955 012107. https://doi.org/10.1088/1757-899x/955/1/012107
  19. 19. Pernkopf F, Roth W, Zoehrer M, Pfeifenberger L, Schindler G, Froening H, et al. Efficient and robust machine learning for real-world systems. arXiv [preprint]. 2018. https://doi.org/10.48550/arXiv.1812.02240
  20. 20. Lowe M, Qin R, Mao X. A review on machine learning, artificial intelligence and smart technology in water treatment and monitoring. Water. 2022;14(9):1384. https://doi.org/10.3390/w14091384
  21. 21. Masih A. Machine learning algorithms in air quality modeling. Glob J Environ Sci Manage. 2019;5(4):515–34. https://doi.org/10.22034/GJESM.2019.04.10
  22. 22. Liu X, Lu D, Zhang A, Liu Q, Jiang G. Data-driven machine learning in environmental pollution: gains and problems. Environ Sci Technol. 2022;56(4):2124–33.https://doi.org/10.1021/acs.est.1c06157
  23. 23. Miller TH, Gallidabino MD, MacRae JI, Hogstrand C, Bury NR, Barron LP, et al. Machine learning for environmental toxicology: a call for integration and innovation. Environ Sci Technol. 2018;52(22):12953–5. https://doi.org/10.1021/acs.est.8b05382
  24. 24. Zhu JJ, Yang M, Ren ZJ. Machine learning in environmental research: common pitfalls and best practices. Environ Sci Technol. 2023;57(46):17671–89. https://doi.org/10.1021/acs.est.3c00026
  25. 25. Sun Y, Wang X, Ren N, Liu Y, You S. Improved machine learning models by data processing for predicting life-cycle environmental impacts of chemicals. Environ Sci Technol. 2023;57(8):3434–44. https://doi.org/10.1021/acs.est.2c04945
  26. 26. Wang MWH, Goodman JM, Allen TEH. Machine learning in predictive toxicology: recent applications and future directions for classification models. Chem Res Toxicol. 2020;34(2):217–39. https://doi.org/10.1021/acs.chemrestox.0c00316
  27. 27. Wang C, Liu B, Chen J, Yu X. Air quality index prediction based on a long short-term memory artificial neural network model. J Comput. 2023;34(2):69–79. https://doi.org/10.53106/199115992023043402006
  28. 28. O'Donncha F, Hu Y, Palmes P, Burke M, Filgueira R, Grant J. A spatio-temporal LSTM model to forecast across multiple temporal and spatial scales. Ecol Inform. 2021;69:101687. https://doi.org/10.1016/j.ecoinf.2022.101687
  29. 29. Brownlee J. Deep learning for computer vision: image classification, object detection, and face recognition in python. Machine Learning Mastery; 2019 Apr 4.
  30. 30. Wang B, Tan X, Guo J, Xiao T, Jiao Y, Zhao J, et al. Drug-induced immune thrombocytopenia toxicity prediction based on machine learning. Pharmaceutics. 2022;14(5):943. https://doi.org/10.3390/pharmaceutics14050943
  31. 31. Liu X. Comparison of different machine learning models: linear model, forest and SVM. Appl Comput Eng. 2024;51:225–30. https://doi.org/10.54254/2755-2721/51/20241467
  32. 32. Meyer AP, Albarghouthi A, D'Antoni L. The dataset multiplicity problem: how unreliable data impacts predictions. FAccT '23: Proceedings of the 2023 ACM Conference on Fairness, Accountability and Transparency. 2023;193–204. https://doi.org/10.1145/3593013.3593988
  33. 33. Paullada A, Raji ID, Bender EM, Denton E, Hanna A. Data and its (dis) contents: a survey of dataset development and use in machine learning research. Patterns. 2021;2(11);100336. https://doi.org/10.1016/j.patter.2021.100336
  34. 34. Daniel F, Kucherbaev P, Cappiello C, Benatallah B, Allahbakhsh M. Quality control in crowdsourcing: a survey of quality attributes, assessment techniques and assurance actions. ACM Comput Surv. 2018;51(1):1–40. https://doi.org/10.1145/3148148
  35. 35. Dang C, Liu Y, Yue H, Qian J, Zhu R. Autumn crop yield prediction using data-driven approaches: support vector machines, random forest and deep neural network methods. Can J Remote Sens. 2020;47(2):162–81. https://doi.org/10.1080/07038992.2020.1833186
  36. 36. Sun Y, Wang X, Ren N, Liu Y, You S. Improved machine learning models by data processing for predicting life-cycle environmental impacts of chemicals. Environ Sci Technol. 2022;57(8):3434–44. https://doi.org/10.1021/acs.est.2c04945
  37. 37. Wongburi P, Park JK. Prediction of wastewater treatment plant effluent water quality using recurrent neural network (RNN) models. Water. 2023;15(9):3325. https://doi.org/10.3390/w15193325
  38. 38. Fang X, Zhai Z, Xiong R, Zhang L, Gao B. LSTM-based modelling for coagulant dosage prediction in wastewater treatment plant. In: AIEE '22: Proceedings of the 2022 3rd International Conference on Artificial Intelligence in Electronics Engineering. 2022;23–7. https://doi.org/10.1145/3512826.3512847
  39. 39. Cheng T, Harrou F, Kadri F, Sun Y, Leiknes T. Forecasting of wastewater treatment plant key features using deep learning-based models: a case study. Ieee Access. 2020;8:184475–85. https://doi.org/10.1109/ACCESS.2020.3030820
  40. 40. Wu F, Shu J. Predictions for COVID-19 with deep learning models of long short-term memory (LSTM). In: Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning. 2022;128–53. https://doi.org/10.4018/978-1-7998-8455-2.ch005
  41. 41. Latif SD. Concrete compressive strength prediction modeling utilizing deep learning long short-term memory algorithm for a sustainable environment. Environ Sci Pollut Res. 2021;28:30294–302. https://doi.org/10.1007/s11356-021-12877-y
  42. 42. Kashyap AA, Raviraj S, Devarakonda A, Nayak KSR, Santhosh KV, Bhat SJ. Traffic flow prediction models – a review of deep learning techniques. Cogent Eng. 2021;9(1):2010510. https://doi.org/10.1080/23311916.2021.2010510
  43. 43. Guo W, Liu J, Dong F, Song M, Li Z, Khan MKH, et al. Review of machine learning and deep learning models for toxicity prediction. Exp Biol Med. 2023;248:1952–73. https://doi.org/10.1177/15353702231209421
  44. 44. Rawat D, Meenakshi, Bajaj R. Performance analysis of drug toxicity prediction using machine learning approaches. In: 2023 3rd Int Conf Innovative Sustainable Computational Technologies (CISCT). 2023;1–6. https://doi.org/10.1109/cisct57197.2023.10351253
  45. 45. Cavasotto CN, Scardino V. Machine learning toxicity prediction: latest advances by toxicity end point. ACS omega. 2022;7(51):47536–46. https://doi.org/10.1021/acsomega.2c05693
  46. 46. Ye G, Wan J, Deng Z, Wang Y, Chen J, Zhu B, et al. Prediction of effluent total nitrogen and energy consumption in wastewater treatment plants: Bayesian optimization machine learning methods. Bioresour Technol. 2024;395:130361. https://doi.org/10.1016/j.biortech.2024.130361
  47. 47. Cechinel MAP, Neves J, Fuck JVR, de Andrade RC, Spogis N, Riella HG, et al. Enhancing wastewater treatment efficiency through machine learning-driven effluent quality prediction: a plant-level analysis. J Water Process Eng. 2024;58:104758. https://doi.org/10.1016/j.jwpe.2023.104758
  48. 48. Lv J, Du L, Lin H, Wang B, Yin W, Song Y, et al. Enhancing effluent quality prediction in wastewater treatment plants through the integration of factor analysis and machine learning. Bioresour Technol. 2024;393:130008. https://doi.org/10.1016/j.biortech.2023.130008
  49. 49. Hino M, Benami E, Brooks N. Machine learning for environmental monitoring. Nat Sustain. 2018;1:583–8. https://doi.org/10.1038/s41893-018-0142-9
  50. 50. Chy MKH, Buadi ON. Role of machine learning in policy making and evaluation. Int J Innov Sci Res Technol. 2024;9(10);456–63.https://doi.org/10.38124/ijisrt/IJISRT24OCT687
  51. 51. Aparna K, Swarnalatha R, Changmai M. Optimizing wastewater treatment plant operational efficiency through integrating machine learning predictive models and advanced control strategies. Process Saf Environ Prot. 2024;188:995–1008. https://doi.org/10.1016/j.psep.2024.05.148
  52. 52. Liu W, Liu T, Liu Z, Luo H, Pei H. A novel deep learning ensemble model based on two-stage feature selection and intelligent optimization for water quality prediction. Environ Res. 2023;224:115560. https://doi.org/10.1016/j.envres.2023.115560
  53. 53. Isibor PO, Kayode-Edwards II, Taiwo OS. Emerging technology and future directions in environmental nanotoxicology. In: Environmental Nanotoxicology: Combatting the Minute Contaminants; Springer. 2024;325–46. https://doi.org/10.1007/978-3-031-54154-4_16
  54. 54. Asensio OI, Mi X, Dharur S. Using machine learning techniques to aid environmental policy analysis. Case Stud Environ. 2020;4(1):961302.https://doi.org/10.1525/cse.2020.961302
  55. 55. Cheng SH, Augustin C, Bethel A, Gill D, Anzaroot S, Brun J, et al. Using machine learning to advance synthesis and use of conservation and environmental evidence. Conserv Biol. 2018;32(4):762–4. https://doi.org/10.1111/cobi.13117
  56. 56. Zhang Y, Yang J, Huang M, Liu H. Neighborhood component analysis for modeling papermaking wastewater treatment processes. Bioprocess Biosyst Eng. 2021;44:2345–59. https://doi.org/10.1007/s00449-021-02608-5
  57. 57. Zang X, Zhao X, Tang B. Hierarchical molecular graph self-supervised learning for property prediction. Commun Chem. 2023;6:34. https://doi.org/10.1038/s42004-023-00825-5
  58. 58. Hsu W-N, Bolte B, Tsai Y-HH, Lakhotia K, Salakhutdinov R, Mohamed A. Hubert: self-supervised speech representation learning by masked prediction of hidden units. IEEE/ACM Trans Audio Speech Lang Process. 2021;29:3451–60. https://doi.org/10.1109/TASLP.2021.3122291
  59. 59. Li Z, Huang C, Xia L, Xu Y, Pei J. Spatial-temporal hypergraph self-supervised learning for crime prediction. In: 2022 IEEE 38th Int Conf Data Eng (ICDE). Kuala Lumpur, Malaysia. 2022;2984–96. https://doi.org/10.1109/ICDE53745.2022.00269
  60. 60. Zou H. Clustering algorithm and its application in data mining. Wirel Pers Commun. 2019;110:21–30. https://doi.org/10.1007/s11277-019-06709-z
  61. 61. Gupta MK, Chandra P. A comprehensive survey of data mining. Int J Inf Technol. 2020;12:1243–57. https://doi.org/10.1007/s41870-020-00427-7
  62. 62. Naik P, Nelaballi S, Pusuluri VS, Kim DK. Deep learning-based code refactoring: A review of current knowledge. Journal of Computer Information Systems. 2024 Mar 3;64(2):314-28. https://doi.org/10.1080/08874417.2023.2203088
  63. 63. Lever J, Krzywinski M, Altman N. Principal component analysis. Nat Methods. 2017;14:6412. http://dx.doi.org/10.1038/nmeth.4346
  64. 64. Maadooliat M, Huang JZ, Hu J. Integrating data transformation in principal components analysis. J Comput Graph Stat. 2015;24(1):84-103. https://doi.org/10.1080/10618600.2014.891461
  65. 65. Olawoyin R, Nieto A, Grayson RL, Hardisty F, Oyewole SA. Application of artificial neural network (ANN)-self-organizing map (SOM) for the categorization of water, soil and sediment quality in petrochemical regions. Expert Syst Appl. 2013;40(9):3634–48. https://doi.org/10.1016/j.eswa.2012.12.069
  66. 66. Tian H, Zhao Y, Luo M, He Q, Han Y, Zeng Z. Estimating PM2.5 from multisource data: a comparison of different machine learning models in the Pearl River Delta of China. Urban Clim. 2021;35:100740. https://doi.org/10.1016/j.uclim.2020.100740
  67. 67. Bilgilioglu H. A comparison of different machine learning models for landslide susceptibility mapping in Rize (Türkiye). Baltica. 2023. https://doi.org/10.5200/baltica.2023.2.3
  68. 68. Liu X. Comparison of different machine learning models: linear model, forest and SVM. Appl Comput Eng. 2024;51:225–30. https://doi.org/10.54254/2755-2721/51/20241467
  69. 69. Sun AY, Scanlon BR. How can Big Data and machine learning benefit environment and water management: a survey of methods, applications, and future directions. Environ Res Lett. 2019;14(7):073001. https://doi.org/10.1088/1748-9326/ab1b7d
  70. 70. Saab C, Zéhil G-P. About machine learning techniques in water quality monitoring. In: 2023 5th Int Conf Adv Comput Tools Eng Appl (ACTEA). Zouk Mosbeh, Lebanon. 2023:115-21. https://doi.org/10.1109/actea58025.2023.10193911
  71. 71. Bai R-H, Fan R-Q, Liu Q, Liu Q, Yan C-R, Cui J-X, et al. Overview of the application of machine learning for identification and environmental risk assessment of microplastics. Huan Jing Ke Xue. 2024;45(2):1185–95. https://doi.org/10.13227/j.hjkx.202302110
  72. 72. Mansoursamaei M, Moradi M, González-Ramírez RG, Lalla-Ruiz E. Machine learning for promoting environmental sustainability in ports. J Adv Transp.2023;2144733:17. https://doi.org/10.1155/2023/2144733
  73. 73. Tsai Y-Y, Chen P-Y, Ho T-Y. Transfer learning without knowing: reprogramming black-box machine learning models with scarce data and limited resources. In: Proc 37th Int Conf Mach Learn (ICML). PMLR. 2020;119:9614–24..
  74. 74. Jui TD, Rivas P. Fairness issues, current approaches and challenges in machine learning models. Int J Mach Learn Cybern. 2024;15:3095–125. https://doi.org/10.1007/s13042-023-02083-2
  75. 75. Chung J, Teo J. Mental health prediction using machine learning: taxonomy, applications and challenges. Appl Comput Intell Soft Comput. 2022;9970363:19 p. https://doi.org/10.1155/2022/9970363
  76. 76. Jenga K, Catal C, Kar G. Machine learning in crime prediction. J Ambient Intell Humaniz Comput. 2023;14:2887–913. https://doi.org/10.1007/s12652-023-04530-y
  77. 77. Bujang SDA, Selamat A, Ibrahim R, Krejcar O, Herrera-Viedma EE, Fujita H, et al. Multiclass prediction model for student grade prediction using machine learning. IEEE Access. 2021;9:95608–21. https://doi.org/10.1109/ACCESS.2021.3093563
  78. 78. Arsić SM, Mihić M, Petrović D, Mitrović Z, Kostić SC, Mihic O. Review of measures for improving ML model interpretability: empowering decision makers with transparent insights. In: 2024 Int Conf Artif Intell Comput Data Sci Appl (ACDSA). Victoria, Seychelles. 2024;1–5. https://doi.org/10.1109/ACDSA59508.2024.10467907
  79. 79. Batzolis E, Vrochidou E, Papakostas GA. Machine learning in embedded systems: limitations, solutions and future challenges. In: 2023 IEEE 13th Annu Comput Commun Workshop Conf (CCWC). Las Vegas, NV, USA. IEEE. 2023;0345–50. https://doi.org/10.1109/CCWC57344.2023.10099348
  80. 80. Ying X. An overview of overfitting and its solutions. J Phys Conf Ser. 2019;1168(2) 022022. https://doi.org/10.1088/1742-6596/1168/2/022022
  81. 81. Gygi JP, Kleinstein SH, Guan L. Predictive overfitting in immunological applications: pitfalls and solutions. Hum Vaccin Immunother. 2023;19(2). https://doi.org/10.1080/21645515.2023.2251830
  82. 82. Rao NSV. Study of overfitting by machine learning methods using generalization equations. In: 2023 26th Int Conf Inf Fusion (FUSION). Charleston, SC, USA. 2023:1–8. https://doi.org/10.23919/fusion52260.2023.10224198
  83. 83. Sinnott RO, Guan Z. Prediction of air pollution through machine learning approaches on the cloud. In: 2018 IEEE/ACM 5th Int Conf Big Data Comput Appl Technol (BDCAT). Zurich, Switzerland. 2018:51–60. https://doi.org/10.1109/bdcat.2018.00015
  84. 84. Icke O, van Es DM, de Koning MF, Wuister JJG, Ng J, Phua KM, et al. Performance improvement of wastewater treatment processes by application of machine learning. Water Sci Technol.. 2020;82(12):2671–80. https://doi.org/10.2166/wst.2020.382
  85. 85. Huntingford C, Jeffers ES, Bonsall MB, Christensen HM, Lees T, Yang H. Machine learning and artificial intelligence to aid climate change research and preparedness. Environ Res Lett. 2019;14 124007. https://doi.org/10.1088/1748-9326/ab4e55
  86. 86. Hamdan A, Ibekwe KI, Etukudoh EA, Umoh AA, Ilojianya VI. AI and machine learning in climate change research: a review of predictive models and environmental impact. World J Adv Res Rev. 2024;21(01):1999–2008. https://doi.org/10.30574/wjarr.2024.21.1.0257
  87. 87. Liu J, Mooney H, Hull V, Davis SJ, Gaskell J, Hertel T, et al. Systems integration for global sustainability. Science. 2015;347(6225). https://doi.org/10.1126/science.1258832
  88. 88. Gupta PK, Yadav B, Kumar A, Himanshu SK. Machine learning and artificial intelligence application in constructed wetlands for industrial effluent treatment: advances and challenges in assessment and bioremediation modeling. In: Bioremediation for Environmental Sustainability. 2021; 403–414. https://doi.org/10.1016/B978-0-12-820524-2.00016-X
  89. 89. Peng N. Application of Machine learning techniques in environmental governance: a review. Adv Eng Technol Res (ICISCTA). 2023;7(1):528–37. https://doi.org/10.56028/aetr.7.1.528.2023
  90. 90. Meshalkin VP, Skobelev DO, Vocciante M, González M, Popov AY. Predicting emissions from the chemical and energy industries: progress in applying modeling approaches. Theor Found Chem Eng. 2021;55:588–93. https://doi.org/10.1134/S0040579521040278
  91. 91. Soklaridis S, Shier R, Black G, Bellissimo G, Di Giandomenico A, Gruszecki S, et al. “My words matter”: perspectives on evaluation from people who access and work in recovery colleges. Mental Health and Social Inclusion. 2024;28(2):134–143. https://doi.org/10.1108/MHSI-01-2023-0002
  92. 92. Jiao H, Udomlertsakul N, Tamprasirt A. Credential control balance: a universal blockchain account model abstract from bank to Bitcoin, Ethereum external owned account and account abstraction. arXiv [preprint]. 2024. https://doi.org/10.48550/arXiv.2402.10616
  93. 93. Ankley GT, Corsi SR, Custer CM, Ekman DR, Hummel SL, Kimbrough KL, et al. Assessing contaminants of emerging concern in the Great Lakes ecosystem: a decade of method development and practical application. Environ Toxicol Chem. 2023;42(12):2506–18. 2023;42(12):2506–18. https://doi.org/10.1002/etc.5740
  94. 94. Dhaker N, Mehta P. Impact of dyeing industrial effluent on physicochemical parameters of ground water quality of industrial area of Bhilwara, Rajasthan. Stud Indian Place Names. 2020;40(68):872–8.
  95. 95. Famoofo OO, Adeniyi IF. Impact of effluent discharge from a medium-scale fish farm on the water quality of Odo-Owa stream near Ijebu-Ode, Ogun State, Southwest Nigeria. Appl Water Sci. 2020;10:68. https://doi.org/10.1007/s13201-020-1148-9
  96. 96. Rocha PAC, Santos VO, Thé JVG, Gharabaghi B. New graph-based and transformer deep learning models for river dissolved oxygen forecasting Environments. 2023;10(12):217. https://doi.org/10.3390/environments10120217
  97. 97. Durell L, Scott JT, Nychka D, Hering AS. Functional forecasting of dissolved oxygen in high-frequency vertical lake profiles. Environmetrics. 2022;34(4):e2765. https://doi.org/10.1002/env.2765
  98. 98. Giao NT. Surface water quality influenced by industrial wastewater effluent in An Giang province, Vietnam. NIPES J Sci Technol Res. 2022;4(1):51–58. https://doi.org/10.37933/nipes/4.1.2022.4
  99. 99. Mohammed R, Al-Obaidi B. Treatability influence of municipal sewage effluent on surface water quality assessment based on Nemerow pollution index using an artificial neural network. IOP Conf Ser Earth Environ Sci. 2021;877 012008. https://doi.org/10.1088/1755-1315/877/1/012008
  100. 100. Bhardwaj A, Kumar S, Singh D. Tannery effluent treatment and its environmental impact: a review of current practices and emerging technologies. Water Qual Res J. 2023;58(2):128–52. https://doi.org/10.2166/wqrj.2023.002

Downloads

Download data is not yet available.