Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Impact of salinity stress on germination and growth potential of sorghum genotypes

DOI
https://doi.org/10.14719/pst.8517
Submitted
26 March 2025
Published
24-11-2025

Abstract

Salinity presents a major challenge to agriculture, negatively impacting crop growth and yield in different ways. As a result, various strategies have been implemented to handle the problem of low productivity. The cultivation of salt-tolerant crops represents a practical solution for achieving profitable yields in saline regions, emphasizing the need for a rapid method to screen for salt-tolerant genotypes, especially in their early growth stages. Consequently, a seed germination test was conducted to assess parameters such as germination percentage, root length, shoot length, fresh weight and dry matter production to identify the salt-tolerant sorghum genotype. The findings indicate that the sorghum genotypes G34 (IS6710), G48 (IS19159), G1 (IS6312), G50 (IS6316) and G2 (IS6313) exhibited tolerance to elevated salt concentrations. These physiological parameters can effectively screen large sorghum germplasm collections, facilitating the identification of salt-tolerant lines suitable for cultivation in saline regions.

References

  1. 1. Cooper EA, Brenton ZW, Flinn BS, Jenkins J, Shu S, Flowers D, et al. A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: implications for the genetics of sugar metabolism. BMC Genomics. 2019;20:420. https://doi.org/10.1186/s12864-019-5734-x
  2. 2. Soni PG, Basak N, Rai AK, Sundha P, Narjary B, Kumar P, et al. Deficit saline water irrigation under reduced tillage and residue mulch improves soil health in sorghum-wheat cropping system in semi-arid region. Sci Rep. 2021;11:1880. https://doi.org/10.1038/s41598-020-80364-4
  3. 3. Food and Agriculture Organization. Crops and livestock products; 2023.
  4. 4. United States Department of Agriculture. World Agricultural Production; 2023.
  5. 5. Fadl ME, Jalhoum MEM, AbdelRahman MAE, Ali EA, Zahra WR, Abuzaid AS, et al. Soil salinity assessing and mapping using several statistical and distribution techniques in arid and semi-arid ecosystems, Egypt. Agronomy. 2023;13:583. https://doi.org/10.3390/agronomy13020583
  6. 6. Mukhopadhyay R, Sarkar B, Jat HS, Sharma PC, Bolan NS. Soil salinity under climate change: challenges for sustainable agriculture and food security. J Environ Manage. 2021;280:111736. https://doi.org/10.1016/j.jenvman.2020.111736
  7. 7. Yamazaki K, Ishimori M, Kajiya-Kanegae H, Takanashi H, Fujimoto M, Yoneda J-I, et al. Effect of salt tolerance on biomass production in a large population of sorghum accessions. Breed Sci. 2020;70:167-75. https://doi.org/10.1270/jsbbs.19009
  8. 8. Afzal M, Hindawi SES, Alghamdi SS, Migdadi HH, Khan MA, Hasnain MU, et al. Potential breeding strategies for improving salt tolerance in crop plants. J Plant Growth Regul. 2023;42:3365-87. https://doi.org/10.1007/s00344-022-10797-w
  9. 9. Garcia-Caparros P, De Filippis L, Gul A, Hasanuzzaman M, Ozturk M, Altay V, et al. Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. Bot Rev. 2021;87:421-66. https://doi.org/10.1007/s12229-020-09231-1
  10. 10. Shah T, Latif S, Saeed F, Alid I, Ullahd S, Alsahlie AA, et al. Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. J King Saud Univ Sci. 2021;33:101207. https://doi.org/10.1016/j.jksus.2020.10.004
  11. 11. Nedunchezhiyan V, Velusamy M, Subburamu K. Seed priming to mitigate the impact of elevated carbon dioxide associated temperature stress on germination in rice (Oryza sativa L.). Arch Agron Soil Sci. 2020;66:83-95. https://doi.org/10.1080/03650340.2019.1599864
  12. 12. Adetunji AE, Bello KO, Popoola JO, Adetunji TL, Varghese B, Sershen, et al. Oxidative stress, ageing and methods of seed invigoration: an overview and perspectives. Agronomy. 2021;11:2369. https://doi.org/10.3390/agronomy11122369
  13. 13. International Seed Testing Association. International rules for seed testing. International Seed Testing Association; 2012.
  14. 14. AbdulBaki AA, Anderson JD. Vigor determination in soybean seed by multiple criteria. Crop Sci. 1973;13:630-3. https://doi.org/10.2135/cropsci1973.0011183X001300060013x
  15. 15. Ha-Tran DM, Nguyen TTM, Hung S-H, Huang E, Huang C-C. Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: a review. Int J Mol Sci. 2021;22:3154. https://doi.org/10.3390/ijms22063154
  16. 16. Soujanya J, Bara BM, Rai PK, Pal AK. Impact of salinity on germination percentage and seedling growth in sorghum (Sorghum bicolor L.) var. CSH-14. Biol Forum Int J. 2022;14(4):198-202.
  17. 17. Ahmed AM, Wais AH, Ditta A, Islam MR, Chowdhury MK, Pramanik MH, et al. Seed germination and early seedling growth of sorghum (Sorghum bicolor L. Moench) genotypes under salinity stress. Pol J Environ Stud. 2024;33(3):3019-32. https://doi.org/10.15244/pjoes/177180
  18. 18. Hu D, Li R, Dong S, Zhang J, Zhao B, Ren B, et al. Maize (Zea mays L.) responses to salt stress in terms of root anatomy, respiration and antioxidative enzyme activity. BMC Plant Biol. 2022;22:602. https://doi.org/10.1186/s12870-022-03972-4
  19. 19. Kumar S, Li G, Yang J, Huang X, Ji Q, Liu Z, et al. Effect of salt stress on growth, physiological parameters, and ionic concentration of water dropwort (Oenanthe javanica) cultivars. Front Plant Sci. 2021;12:660409. https://doi.org/10.3389/fpls.2021.660409
  20. 20. Ozyazıcı MA, Açıkbaş S. Effects of different salt concentrations on germination and seedling growth of some sweet sorghum [Sorghum bicolor var. saccharatum (L.) Mohlenbr.] cultivars. Turk J Agric Res. 2021;8:133-43. https://doi.org/10.19159/tutad.769463
  21. 21. Kazemi R, Ronaghi A, Yasrebi J, Ghasemifasaei R, Zarei M. Effect of shrimp waste-derived biochar and arbuscular mycorrhizal fungus on yield, antioxidant enzymes, and chemical composition of corn under salinity stress. J Soil Sci Plant Nutr. 2019;19:758-70. https://doi.org/10.1007/s42729-019-00075-2
  22. 22. Ali R, Gul H, Hamayun M, Rauf M, Iqbal A, Hussain A, et al. Endophytic fungi control the physicochemical status of maize crop under salt stress. Pol J Environ Stud. 2022;31:561-70. https://doi.org/10.15244/pjoes/134540
  23. 23. Sarker MN, Hossain AKMZ, Begum S, Islam SN, Biswas SK, Tareq MZ. Effect of salinity on seed germination and seedlings growth of sorghum (Sorghum bicolor L.). J Biosci Agric Res. 2019;21:1786-93. https://doi.org/10.18801/jbar.210219.218
  24. 24. Amna, Din BU, Sarfraz S, Xia Y, Kamran MA, Javed MT, et al. Mechanistic elucidation of germination potential and growth of wheat inoculated with exopolysaccharide and ACC-deaminase producing Bacillus strains under induced salinity stress. Ecotoxicol Environ Saf. 2019;183:109466. https://doi.org/10.1016/j.ecoenv.2019.109466
  25. 25. El-Badri AM, Batool M, Wang C, Hashem AM, Tabl KM, Nishawy E, et al. Selenium and zinc oxide nanoparticles modulate the molecular and morpho-physiological processes during seed germination of Brassica napus under salt stress. Ecotoxicol Environ Saf. 2021;225:112695. https://doi.org/10.1016/j.ecoenv.2021.112695
  26. 26. Zhao C, Zhang H, Song C, Zhu JK, Shabala S. Mechanisms of plant responses and adaptation to soil salinity. The Innovation. 2020;1:100017. https://doi.org/10.1016/j.xinn.2020.100017
  27. 27. Rajabi Dehnavi A, Piernik A, Ludwiczak A, Szymańska S, Ciarkowska A, Cárdenas Pérez S, et al. Mitigation of salt stress in Sorghum bicolor L. by the halotolerant endophyte Pseudomonas stutzeri ISE12. Front Plant Sci. 2024;15:1458540. https://doi.org/10.3389/fpls.2024.1458540
  28. 28. Calone R, Sanoubar R, Lambertini C, Speranza M, Vittori Antisari L, Hasan MK, et al. Salinity tolerance of black gram cultivars during germination and early seedling growth. Cercet Agron Moldova. 2018;51:51-9. https://doi.org/10.2478/cerce-2018-0025
  29. 29. Vianello G, Barbanti L. Salt tolerance and Na allocation in Sorghum bicolor under variable soil and water salinity. Plants. 2020;9:561. https://doi.org/10.3390/plants9050561
  30. 30. Ashraf M. Some important physiological selection criteria for salt tolerance in plants. Flora. 2004;199:361-76. https://doi.org/10.1078/0367-2530-00165
  31. 31. Sagar A. Screening of sorghum germplasms for salinity tolerance based on morpho-physiological and biochemical traits [Master’s Thesis]. Bangladesh Agricultural University; 2017.

Downloads

Download data is not yet available.