Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Effects of canopy openness on diversity and distribution of invasive alien plants in an Indo-Burma biodiversity hotspot region

DOI
https://doi.org/10.14719/pst.8528
Submitted
26 March 2025
Published
31-10-2025
Versions

Abstract

Invasive alien plants (IAPs) perturb the ecosystem functioning and endanger plant biodiversity, which is inadequately explored in global biodiversity hotspots. The present study, therefore, aimed to analyze the vegetation dynamics and plant diversity in the urban forest of Aizawl, Mizoram, an integral landscape of the Indo-Burma biodiversity hotspot. The study was conducted from 2020 to 2023. We evaluated the phytosociology of IAPs along the anthropogenic disturbance gradient (highly disturbed, moderately disturbed and less disturbed sites), which were distinct in the urban forest. We also investigate the ecology of IAPs in the area by determining habitat attributes such as forest canopy openness, leaf area index (LAI) and photosynthetically active radiation (PAR). LAI is the total surface area of leaves per unit of ground area (m2 m-2) and PAR is the portion of the electromagnetic spectrum (400-700 nm) that green plants may employ to power their photosynthesis. Moderately disturbed site recorded the highest number of plant individuals (n = 1158) with an importance value index (IVI) ranging from 1.60 to 32.16. Further, the disturbed site recorded a total of n = 595 plant individuals with IVI ranging from 2.09 to 31.38. Whereas the less disturbed site has the least plant individuals (n = 146) with IVI ranging from 7.89 to 36.53. Notably, IAPs such as Ageratum conizoides L., Calyptocarpus vialis Less., Chromolaena odorata (L.) R.M. King & H. Rob. have the highest IVI at all sites. The canopy openness was more pronounced in disturbed habitats (87.42 %) when compared with moderately disturbed (25.92 %) and less disturbed (37.24 %) habitats. Maintaining the intact forest canopy by increasing native plant species richness and less human intervention on the pristine environment can result in sustainable management of IAPs. Therefore, regulate the invasive spread and alteration of species dynamics of biodiversity hotspot region.

References

  1. 1. Rai PK. Environmental degradation by invasive alien plants in the anthropocene: challenges and prospects for sustainable restoration. Anthr Sci. 2022;1(1):5-28. https://doi.org/10.1007/s44177-021-00004-y
  2. 2. Rai PK, Singh JS. Ecological insights and environmental threats of invasive alien plant Chromolaena odorata: prospects for sustainable management. Weed Biol Manag. 2024;24(1):15-37. https://doi.org/10.1111/wbm.12286
  3. 3. Pejchar L, Mooney HA. Invasive species, ecosystem services and human well-being. Trends Ecol Evol. 2009;24(9):497-504. https://doi.org/10.1016/j.tree.2009.03.016
  4. 4. Bolpagni R. Towards global dominance of invasive alien plants in freshwater ecosystems: the dawn of the Exocene? Hydrobiologia. 2021;848(9):2259-79. https://doi.org/10.1007/s10750-020-04490-w
  5. 5. Delavaux CS, Crowther TW, Zohner CM, Robmann NM, Lauber T, Van den Hoogen J, et al. Native diversity buffers against severity of non-native tree invasions. Nature. 2023;621(7980):773-81. https://doi.org/10.1038/s41586-023-06440-7
  6. 6. Syngkli RB, Rai PK. Expanding horizon of invasive alien plants under the interacting effects of global climate change: multifaceted impacts and management prospects. Clim Change Ecol. 2025;9:100092. https://doi.org/10.1016/j.ecochg.2025.100092
  7. 7. Richardson DM, Hui C, Nuñez MA, Pauchard A. Tree invasions: patterns, processes, challenges and opportunities. Biol Invasions. 2014;16:473-81. https://doi.org/10.1007/s10530-013-0606-9
  8. 8. Pyšek P, Hulme PE, Simberloff D, Bacher S, Blackburn TM, Carlton JT, et al. Scientists' warning on invasive alien species. Biol Rev. 2020;95(6):1511-34. https://doi.org/10.1111/brv.12627
  9. 9. Rai PK, Singh JS. Invasive alien plant species: their impact on environment, ecosystem services and human health. Ecol Indic. 2020;111:106020. https://doi.org/10.1016/j.ecolind.2019.106020
  10. 10. Richardson DM, Rejmánek M. Trees and shrubs as invasive alien species–a global review. Divers Distrib. 2011;17(5):788-809. https://doi.org/10.1111/j.1472-4642.2011.00782.x
  11. 11. Sharma J, Singh R, Garai S, Rahaman SM, Khatun M, Ranjan A, et al. Climate change and dispersion dynamics of the invasive plant species Chromolaena odorata and Lantana camara in parts of the central and eastern India. Ecol Inform. 2022;72:101824. https://doi.org/10.1016/j.ecoinf.2022.101824
  12. 12. Bartz R, Kowarik I. Assessing the environmental impacts of invasive alien plants: a review of assessment approaches. NeoBiota. 2019;43:69-99. https://doi.org/10.3897/neobiota.43.30122
  13. 13. Rai PK, Singh JS. Ecological mechanisms and weed biology of World's Worst invasive alien plant Mikania micrantha: policy measures for sustainable management. Weed Biol Manag. 2025;25(3):e70004. https://doi.org/10.1111/wbm.70004
  14. 14. Wang C, Cheng H, Wu B, Jiang K, Wang S, Wei M, et al. The functional diversity of native ecosystems increases during the major invasion by the invasive alien species, Conyza canadensis. Ecol Eng. 2021;159:106093. https://doi.org/10.1016/j.ecoleng.2020.106093
  15. 15. Syngkli RB, Lalremruati B, Rai PK. Effects of three invasive alien plant species on soil attributes at different disturbance gradients in Aizawl, Mizoram, North East India. Vegetos. 2025;1-3. https://doi.org/10.1007/s42535-025-01377-w
  16. 16. Callaway RM, Ridenour WM. Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ. 2004;2(8):436-43. https://doi.org/10.1890/1540-9295(2004)002[0436:NWISAT]2.0.CO;2
  17. 17. Keane RM, Crawley MJ. Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol. 2002;17(4):164-70. https://doi.org/10.1016/S0169-5347(02)02499-0
  18. 18. Rai PK. Paradigm of plant invasion: multifaceted review on sustainable management. Environ Monit Assess. 2015;187:1-30. https://doi.org/10.1007/s10661-015-4934-3
  19. 19. Shiferaw H, Schaffner U, Bewket W, Alamirew T, Zeleke G, Teketay D, et al. Modelling the current fractional cover of an invasive alien plant and drivers of its invasion in a dryland ecosystem. Sci Rep. 2019;9(1):1576. https://doi.org/10.1038/s41598-018-36587-7
  20. 20. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403(6772):853-8. https://doi.org/10.1038/35002501
  21. 21. Schreiber J, Baldrian P, Brabcová V, Brandl R, Kellner H, Müller J, et al. Effects of experimental canopy openness on wood-inhabiting fungal fruiting diversity across succession. Sci Rep. 2024;14(1):16135. https://doi.org/10.1038/s41598-024-67216-1
  22. 22. Charbonneau NC, Fahrig L. Influence of canopy cover and amount of open habitat in the surrounding landscape on proportion of alien plant species in forest sites. Ecoscience. 2004;11(3):278-81. https://doi.org/10.1080/11956860.2004.11682833
  23. 23. Mandal G, Joshi SP. Analysis of vegetation dynamics and phytodiversity from three dry deciduous forests of Doon Valley, Western Himalaya, India. J Asia-Pac Biodivers. 2014;7(3):292-304. https://doi.org/10.1016/j.japb.2014.07.006
  24. 24. Mittermeier RA, Gil PR, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, et al. Hotspots revisited. In: Earth's biologically richest and most endangered terrestrial ecoregions. Cemex; 2004.
  25. 25. Sagar R, Raghubanshi AS, Singh JS. Tree species composition, dispersion and diversity along a disturbance gradient in a dry tropical forest region of India. For Ecol Manag. 2003;186(1-3):61-71. https://doi.org/10.1016/S0378-1127(03)00235-4
  26. 26. Misra R. Ecology workbook. Calcutta, India: Oxford and IBH publishing company; 1968. p. 244.
  27. 27. Kershaw KA. Quantitative and dynamic plant ecology. New York, NY: American Elsevier Publishing Company, Inc.; 1973. p. 183.
  28. 28. Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27(3):379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  29. 29. Margalef R. Temporal succession and spatial heterogeneity in phytoplankton. In: Buzzati-Traverso A, editor. Perspectives in marine biology. Berkeley: University of California Press; 1958. p. 323-50. https://doi.org/10.1525/9780520350281-024
  30. 30. Pielou EC. The measurement of diversity in different types of biological collections. J Theor Biol. 1966;13:131-44. https://doi.org/10.1016/0022-5193(66)90013-0
  31. 31. Syngkli RB, Rai PK. Allelopathic effects of Ageratum conyzoides L. on the germination and growth of Zea mays L., Lactuca sativa L. and Solanum lycopersicum L. Allelopathy J. 2024;62(2):193-204. https://doi.org/10.26651/allelo.j/2024-62-2-1494
  32. 32. Center NGD. NCEI Geomagnetic Calculators [Internet]. www.ngdc.noaa.gov. [cited 2024 Oct 14]. Available from: https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml#declination
  33. 33. Rai PK, Vanlalruati. Societal perception on environmental and socio-economic implications of Tithonia diversifolia (Hemsl.) A. Gray invasion in an Indo-Burma biodiversity hotspot. Environ Socio-Econom Stud. 2022;10(3):59-66. https://doi.org/10.2478/environ-2022-0017
  34. 34. Sakachep ZK, Rai PK. Effects of invasive alien plants on floristic diversity and soil physico-chemical characteristics in Hailakandi district, Assam, an Indo Burma hotspot region. Trop Ecol. 2025;66:303-20. https://doi.org/10.1007/s42965-025-00387-8
  35. 35. Global Invasive Species Database. 100 of the World's Worst Invasive Alien Species [Internet]. Iucngisd.org. 2013 [Cited 2024 Dec 13]. Available from: http://www.iucngisd.org/gisd/100_worst.php on 04-03-2025
  36. 36. Roxburgh SH, Shea K, Wilson JB. The intermediate disturbance hypothesis: patch dynamics and mechanisms of species coexistence. Ecology. 2004;85(2):359-71. https://doi.org/10.1890/03-0266
  37. 37. Moi DA, García-Ríos R, Hong Z, Daquila BV, Mormul RP. Intermediate disturbance hypothesis in ecology: a literature review. Annales Zoologici Fennici. 2020;57(1-6):67-78. https://doi.org/10.5735/086.057.0108
  38. 38. Kohli RK, Dogra KS, Batish DR, Singh HP. Impact of invasive plants on the structure and composition of natural vegetation of northwestern Indian Himalayas. Weed Technol. 2004;18(sp1):1296-300. https://doi.org/10.1614/0890-037X(2004)018[1296:IOIPOT]2.0.CO;2
  39. 39. Hejda M, Pyšek P, Jarošík V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J Ecol. 2009;97(3):393-403. https://doi.org/10.1111/j.1365-2745.2009.01480.x
  40. 40. Mungi NA, Qureshi Q, Jhala YV. Role of species richness and human impacts in resisting invasive species in tropical forests. J Ecol. 2021;109(9):3308-21. https://doi.org/10.1111/1365-2745.13751
  41. 41. Jamil MD, Waheed M, Akhtar S, Bangash N, Chaudhari SK, Majeed M, et al. Invasive plants diversity, ecological status, and distribution pattern in relation to edaphic factors in different habitat types of district Mandi Bahauddin, Punjab, Pakistan. Sustainability. 2022;14(20):13312. https://doi.org/10.3390/su142013312
  42. 42. Bhattarai D, Lamichhane S, Regmi AR, Joshi KP, Pandeya P, Dhami B, et al. Impact of invasive alien plants on the resident floral diversity in Koshi Tappu Wildlife Reserve, Nepal. Ecol Evol. 2024;14(10):e70316. https://doi.org/10.1002/ece3.70316
  43. 43. Langmaier M, Lapin K. A systematic review of the impact of invasive alien plants on forest regeneration in European temperate forests. Front Plant Sci. 2020;11:524969. https://doi.org/10.3389/fpls.2020.524969
  44. 44. Sharma LN, Adhikari B, Watson MF, Shrestha BB, Paudel E, Karna B, et al. Forest canopy resists plant invasions: a case study of Chromolaena odorata in Sal (Shorea robusta) forests of Nepal. J Trop Ecol. 2022;38(2):49-57. https://doi.org/10.1017/S0266467421000456
  45. 45. Veselkin DV, Dubrovin DI, Pustovalova LA. High canopy cover of invasive Acer negundo L. affects ground vegetation taxonomic richness. Sci Rep. 2021;11(1):20758. https://doi.org/10.1038/s41598-021-00258-x
  46. 46. Taneja YV, Page NV, Kumar RS, Naniwadekar R. Effects of canopy cover on fruiting intensity and fruit removal of a tropical invasive weed. For Ecol Manag. 2022;523:120502. https://doi.org/10.1016/j.foreco.2022.120502
  47. 47. Padmanaba M, Corlett RT. Minimizing risks of invasive alien plant species in tropical production forest management. Forests. 2014;5(8):1982-98. https://doi.org/10.3390/f5081982
  48. 48. Subedi A, Adhikari A, Tiwari A, Shrestha BB. Canopy gaps facilitate establishment of invasive plants in a subtropical broadleaved forest of central Nepal. Front Ecol. 2024;44(4):781-7. https://doi.org/10.1016/j.ecofro.2024.02.009

Downloads

Download data is not yet available.