Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Potential of exo-polysaccharide producing plant growth promoting bacteria in growth promotion and disease suppression of chilli

DOI
https://doi.org/10.14719/pst.8543
Submitted
27 March 2025
Published
13-08-2025

Abstract

Bacteria producing exo-polysaccharides (EPS), isolated from the rhizosphere of chilli (Capsicum annuum L.), demonstrate considerable potential for enhancing plant growth and managing fungal pathogens. These bacteria exhibit a variety of plant growth-promoting traits, including the synthesis of phytohormones like indole-3-acetic acid (IAA) and gibberellic acid (GA), as well as the production of siderophores, phosphate solubilization and ammonia release. The antagonistic activity of these isolates against chilli anthracnose pathogen Colletotrichum capsici, was evaluated using dual plate assay. Among the isolates tested, Bacillus halotolerans CAJPH6 showed the maximum inhibition of C. capsici (72 %), followed by Bacillus stercoris CAJRH6 (70 %) and Bacillus subtilis CFORH5 (64 %). The gravimetric evaluation of EPS production showed that Bacillus stercoris CAJRH6 yielded 0.93 mg mL-1, Bacillus subtilis CFORH5 produced 0.89 mg mL-1 and Bacillus halotolerans CAJPH6 generated 0.72 mg mL-1. This study emphasizes the potential of EPS-producing bacterial isolates as an alternative to chemical fertilizers and fungicides, supporting sustainable and eco-friendly farming practices.

References

  1. 1. Sardari RR, Kulcinskaja E, Ron EY, Björnsdóttir S, Friðjónsson ÓH, Hreggviðsson GÓ, et al. Evaluation of the production of exopolysaccharides by two strains of the thermophilic bacterium Rhodothermus marinus. Carbohydrate Polymers. 2017;156:1–8. https://doi.org/10.1016/j.carbpol.2016.08.062
  2. 2. Yu WH, Li N, Tong DS, Zhou CH, Lin CX, Xu CY. Adsorption of proteins and nucleic acids on clay minerals and their interactions: A review. Applied Clay Science. 2013;80:443–52. https://doi.org/10.1016/j.clay.2013.06.003
  3. 3. Vardharajula S. Exopolysaccharide production by drought tolerant Bacillus spp. and effect on soil aggregation under drought stress. The Journal of Microbiology, Biotechnology and Food Sciences. 2014;4(1):51. https://doi.org/10.15414/jmbfs.2014.4.1.51-57
  4. 4. Balsanelli E, Baura VA, Pedrosa FD, Souza EM, Monteiro RA. Exopolysaccharide biosynthesis enables mature biofilm formation on abiotic surfaces by Herbaspirillum seropedicae. PloS One. 2014;9(10):e110392. https://doi.org/10.1371/journal.pone.0110392
  5. 5. Dar A, Zahir ZA, Iqbal M, Mehmood A, Javed A, Hussain A, et al. Efficacy of rhizobacterial exopolysaccharides in improving plant growth, physiology and soil properties. Environmental Monitoring and Assessment. 2021;193:1–5.
  6. https://doi.org/10.1007/s10661-021-09286-6
  7. 6. Dasgupta D, Paul A, Acharya K, Minkina T, Mandzhieva S, Gorovtsov AV, et al. Bioinoculant mediated regulation of signalling cascades in various stress responses in plants. Heliyon. 2023;9(1):e12953. https://doi.org/10.1016/j.heliyon.2023.e12953
  8. 7. Musa OI, Akande SA, Ijah UJ, Abioye OP, Maude AM, Samuel JO, et al. Biofilms communities in the soil: characteristic and interactions using mathematical model. Research in Microbiology. 2024;175(3):104149. https://doi.org/10.1016/j.resmic.2023.104149
  9. 8. Paul S, Parvez SS, Goswami A, Banik A. Exopolysaccharides from agriculturally important microorganisms: conferring soil nutrient status and plant health. International Journal of Biological Macromolecules. 2024;262:129954. https://doi.org/10.1016/j.ijbiomac.2024.129954
  10. 9. Bhagat N, Raghav M, Dubey S, Bedi N. Bacterial exopolysaccharides: Insight into their role in plant abiotic stress tolerance. Journal of Microbiology and Biotechnology. 2021;31(8):1045. https://doi.org/10.4014/jmb.2105.05009
  11. 10. Chowdhury MF, Yusop MR, Ismail SI, Ramlee SI, Oladosu Y, Hosen M, et al. Development of anthracnose disease resistance and heat tolerance chilli through conventional breeding and molecular approaches: a review. Biocell. 2020;44(3):269. https://doi.org/10.32604/biocell.2020.09627
  12. 11. Haq IU, Ijaz S. Plant Disease Management Strategies for Sustainable Agriculture through Traditional and Modern Approaches. Springer Nature; 2020.
  13. 12. Ansari M, Devi BM, Sarkar A, Chattopadhyay A, Satnami L, Balu P, et al. Microbial exudates as biostimulants: role in plant growth promotion and stress mitigation. Journal of Xenobiotics. 2023;13(4):572–603. https://doi.org/10.3390/jox13040037
  14. 13. Sood G, Kaushal R, Sharma M. Alleviation of drought stress in maize (Zea mays L.) by using endogenous endophyte Bacillus subtilis in North West Himalayas. Acta Agriculturae Scandinavica, Section B—Soil and Plant Science. 2020;70(5):361–70. https://doi.org/10.1080/09064710.2020.1743749
  15. 14. Ng CW, Yan WH, Tsim KW, San So P, Xia YT, To CT. Effects of Bacillus subtilis and Pseudomonas fluorescens as the soil amendment. Heliyon. 2022;8(11):e11674. https://doi.org/10.1016/j.heliyon.2022.e11674
  16. 15. Harsonowati W, Latifah E, Nurrahma AH, Purwani J, Iqbal R, Parray JA, et al. Emerging diseases: trend research and omics-based analysis reveals mechanisms of endophytes modulate chilli plant resilience. Symbiosis. 2024;93(3):241–54. https://doi.org/10.1007/s13199-024-01005-2
  17. 16. Tallgren AH, Airaksinen U, von Weissenberg R, Ojamo H, Kuusisto J, Leisola M. Exopolysaccharide-producing bacteria from sugar beets. Applied and Environmental Microbiology. 1999;65(2):862–4. https://doi.org/10.1128/AEM.65.2.862-864.1999
  18. 17. Gordon SA, Weber RP. Colorimetric estimation of indoleacetic acid. Plant Physiology. 1951;26(1):192. https://doi.org/10.1104/pp.26.1.192
  19. 18. Holbrook AA, Edge WL, Bailey F. Spectrophotometric Method for Determination of Gibberellic Acid in Gibberellins. ACS Washington, D.C; 1961. p. 159–67. https://doi.org/10.1021/ba-1961-0028.ch018
  20. 19. Schwyn B, Neilands J. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry. 1987;160(1):47–56. https://doi.org/10.1016/0003-2697(87)90612-9
  21. 20. Agaras BC, Scandiani M, Luque A, Fernández L, Farina F, Carmona M, et al. Quantification of the potential biocontrol and direct plant growth promotion abilities based on multiple biological traits distinguish different groups of Pseudomonas spp. isolates. Biological Control. 2015;90:173–86. https://doi.org/10.1016/j.biocontrol.2015.07.003
  22. 21. Edi Premono M, Moawad AM, Vlek PL. Effect of phosphate-solublizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indonesian Journal of Crop Science. 1996;11(1):13–23.
  23. 22. Cappuccino JG, Sherman N. Microbiology Laboratory Manual. Harlow, England; 1999. p. 458.
  24. 23. Humphries EC. Mineral components and ash analysis. In: Paech K, Tracey MV, editors. Moderne Methoden der Pflanzenanalyse/Modern Methods of Plant Analysis. Berlin, Heidelberg: Springer; 1956. p. 468–502. https://doi.org/10.1007/978-3-642-80530-1_17
  25. 24. Shaw JF, Lin FP, Chen SC, Chen HC. Purification and properties of an extracellular a-amylase from Thermus sp. Botanical Bulletin of Academia Sinica. 1995;36:95–200.
  26. 25. Apun K, Jong BC, Salleh MA. Screening and isolation of a cellulolytic and amylolytic Bacillus from sago pith waste. The Journal of General and Applied Microbiology. 2000;46:263–7. https://doi.org/10.2323/jgam.46.263
  27. 26. Celik GY, Aslim B, Beyatli Y. Characterization and production of the exopolysaccharide (EPS) from Pseudomonas aeruginosa G1 and Pseudomonas putida G12 strains. Carbohydrate Polymers. 2008;73(1):178–82. https://doi.org/10.1016/j.carbpol.2007.11.021
  28. 27. Korsten L, De Jager ES. Mode of action of Bacillus subtilis for control of avocado postharvest pathogens. South African Avocado Growers’ Association Yearbook. 1995; 18:124–30.
  29. 28. Hudlow WR, Krieger R, Meusel M, Sehhat JC, Timken MD, Buoncristiani. The NucleoSpin® DNA Clean-up XS kit for the concentration and purification of genomic DNA extracts: An alternative to microdialysis filtration. Forensic Science International: Genetics. 2011;5(3):226–30. https://doi.org/10.1016/j.fsigen.2010.03.005
  30. 29. Gopinath PP, Parsad R, Joseph B, Adarsh VS. GRAPES: General R shiny Based Analysis Platform Empowered by Statistics. 2020. https://www.kaugrapes.com/home.version 1.0.0. https://doi.org/10.5281/zenodo.492320
  31. 30. Defez R, Andreozzi A, Dickinson M, Charlton A, Tadini L, Pesaresi P, et al. Improved drought stress response in alfalfa plants nodulated by an IAA over-producing Rhizobium strain. Frontiers in Microbiology. 2017;8:2466. https://doi.org/10.3389/fmicb.2017.02466
  32. 31. Ashraf M, Hasnain S, Berge O, Mahmood T. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biology and Fertility of Soils. 2004;40:157–62.
  33. https://doi.org/10.1007/s00374-004-0766-y
  34. 32. Nithyapriya S, Lalitha S, Sayyed RZ, Reddy MS, Dailin DJ, El Enshasy HA, et al. Production, purification and characterization of bacillibactin siderophore of Bacillus subtilis and its application for improvement in plant growth and oil content in sesame. Sustainability. 2021;13(10):5394. https://doi.org/10.3390/su13105394
  35. 33. Patel S, Sayyed RZ, Saraf M. Bacterial determinants and plant defense induction: their role as biocontrol agents in sustainable agriculture. Plant, Soil and Microbes. 2016:187–204. https://doi.org/10.1007/978-3-319-29573-2_9
  36. 34. Verma VC, Singh SK, Prakash S. Bio‐control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. Journal of Basic Microbiology. 2011;51(5):550–6. https://doi.org/10.1002/jobm.201000155
  37. 35. de Freitas MM, Souza PM, Cruvinel K, Barros T, Santos SN, Long PF, et al. Interferences that impact measuring optimal L-asparaginase activity and consequent errors interpreting these data. Applied Microbiology and Biotechnology. 2019;103:5161–6. https://doi.org/10.1007/s00253-019-09890-0
  38. 36. Jha CK, Patel B, Saraf M. Stimulation of the growth of Jatropha curcas by the plant growth promoting bacterium Enterobacter cancerogenus MSA2. World Journal of Microbiology and Biotechnology. 2012;28:891–9. https://doi.org/10.1007/s11274-011-0886-0
  39. 37. Prajakta BM, Suvarna PP, Raghvendra SP, Alok RR. Potential biocontrol and superlative plant growth promoting activity of indigenous Bacillus mojavensis PB-35 (R11) of soybean (Glycine max) rhizosphere. SN Applied Sciences. 2019;1(10):1143.
  40. https://doi.org/10.1007/s42452-019-1149-1
  41. 38. Mir MI, Kumar BK, Gopalakrishnan S, Vadlamudi S, Hameeda B. Characterization of rhizobia isolated from leguminous plants and their impact on the growth of ICCV 2 variety of chickpea (Cicer arietinum L.). Heliyon. 2021;7(11):e08321.
  42. https://doi.org/10.1016/j.heliyon.2021.e08321
  43. 39. Cao S, Jiang B, Yang G, Pan G, Pan Y, Chen F, et al. Isolation and evaluation of Bacillus subtilis RSS-1 as a potential biocontrol agent against Sclerotinia sclerotiorum on oilseed rape. European Journal of Plant Pathology. 2023;166:9–25.
  44. https://doi.org/10.1007/s10658-023-02642-x
  45. 40. Mishra RK, Sahu PK, Mishra V, Jamal H, Varma A, Tripathi S. Isolation and characterization of halotolerant plant growth promoting rhizobacteria from mangrove region of Sundarbans, India for enhanced crop productivity. Frontiers in Plant Science. 2023;14:1122347. https://doi.org/10.3389/fpls.2023.1122347
  46. 41. Ilyas N, Mumtaz K, Akhtar N, Yasmin H, Sayyed RZ, Khan W, et al. Exopolysaccharides producing bacteria for the amelioration of drought stress in wheat. Sustainability. 2020;12(21):8876. https://doi.org/10.3390/su12218876
  47. 42. Jurášková D, Ribeiro SC, Silva CC. Exopolysaccharides produced by lactic acid bacteria: from biosynthesis to health-promoting properties. Foods. 2022;11(2):156. https://doi.org/10.3390/foods11020156
  48. 43. Akhtar N, Ilyas N, Yasmin H, Sayyed RZ, Hasnain ZA, Elsayed E, et al. Role of Bacillus cereus in improving the growth and phytoextractability of Brassica nigra (L.) K. Koch in chromium contaminated soil. Molecules. 2021;26(6):1569.
  49. https://doi.org/10.3390/molecules26061569
  50. 44. Radhakrishnan R, Hashem A, Abd_Allah EF. Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Frontiers in Physiology. 2017;8:667. https://doi.org/10.3389/fphys.2017.00667
  51. 45. Tahir HA, Gu Q, Wu H, Raza W, Hanif A, Wu L, et al. Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Frontiers in Microbiology. 2017;8:171. https://doi.org/10.3389/fmicb.2017.00171

Downloads

Download data is not yet available.