Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Calibration of leaf colour chart for need-based nitrogen management in Rabi maize under varied planting density in rainfed agriculture

DOI
https://doi.org/10.14719/pst.8549
Submitted
27 March 2025
Published
31-10-2025

Abstract

Efficient nitrogen management is critical to improving maize (Zea mays L.) productivity and sustainability under rainfed conditions, where excessive or untimely N use can result in environmental degradation and low nitrogen use efficiency (NUE). Two years of field studies were conducted during consecutive Rabi seasons (2017-18 and 2018-19) at the wetland Farm of S.V. Agricultural College, Tirupati, to calibrate the lead colour chart (LCC) for increasing grain yield, NUE and nutrient uptake under varied planting densities. The study intended to establish threshold leaf greenness values as practical guides for in-season, need based nitrogen top dressing in maize. A split-split plot design was used with three planting densities (66666, 83333 and 111111 plants ha-1), three nitrogen levels (30, 35 and 40 kg N ha-1) and three LCC thresholds (4, 4.5 and 5). Results showed that highest planting density (111111 plants ha-1) combined with 40 kg N ha-1 applied in splits based on LCC 5 significantly improved plant growth parameters, chlorophyll content, dry matter accumulation and kernel yield (5.36 t ha-1), along with enhanced nitrogen uptake (114.1 kg ha-1) and NUE (31.4 kg grain per kg N). Regression analysis revealed that dry weight (R² = 0.96), LAI (R² = 0.84) and NUE (R² = 0.70) were the strongest predictors of yield. LCC based nitrogen scheduling synchronized N supply with crop demand, minimized losses and improved soil N balance. These findings validate that LCC is an effective, ow cost tool for enhancing maize productivity and nutrient efficient under rainfed conditions.

References

  1. 1. USDA, FAS. World Market and Trade. United States Department of Agriculture Foreign Agricultural Service; 12th January 2018.
  2. 2. NCoMM. Special report. Nature Communications. London: Nature Publishing Group; September 2017.
  3. 3. Naik BSSS, Sharma SK, Pramanick B, Yadav SK, Reddy GK, Tirunagari R, et al. Development of an improved silicon application protocol for organic sweet corn cultivation ensuring higher productivity and better soil health. Silicon. 2024;16(6):2547-55. https://doi.org/10.1007/s12633-024-02858-4
  4. 4. Bamboriya JS, Purohit HS, Naik BSSS, Pramanick B, Bamboriya SD, Doodhawal K, et al. Monitoring the effect of integrated nutrient management practices on soil health in maize-based cropping system. Front Sustainable Food Syst. 2023;7:1-11. https://doi.org/10.3389/fsufs.2023.1242806
  5. 5. Pramanick B, Kumar M, Naik BM, Kumar M, Singh SK, Maitra S, et al. Long-term conservation tillage and precision nutrient management in maize-wheat cropping system: Effect on soil properties, crop production, and economics. Agronomy. 2022;12(11):2766. https://doi.org/10.3390/agronomy12112766
  6. 6. Naik BSSS, Sharma SK, Pramanick B, Chaudhary R, Yadav SK, Tirunagari R, et al. Silicon in combination with farmyard manure improves the productivity, quality, and nitrogen use efficiency of sweet corn in an organic farming system. Silicon. 2022;14:5733-43. https://doi.org/10.1007/s12633-022-01818-0
  7. 7. Chiranjeeb K, Mahawar N, Dhegavath S, Bamboriya JS, Mali GR, Rupesh T, et al. Soil health: A better sustainable option for nation’s food security. Int J Curr Microbiol Appl Sci. 2020;11:3380-92.
  8. 8. Sharma A, Sharma SK, Vyas L, Yadav SK, Pramanick B, Naik BSSS, et al. Innovative organic nutrient management and land arrangements improve soil health and productivity of wheat (Triticum aestivum L.) in an organic farming system. Front Sustainable Food Syst. 2024;8:1-13. https://doi.org/10.3389/fsufs.2024.1455433
  9. 9. Fang QX, Ma L, Yu Q, Hu CS, Li XX, Malone RW, et al. Quantifying climate and management effects on regional crop yield and nitrogen leaching in the North China Plain. J Environ Qual. 2013;42(5):1466-79. https://doi.org/10.2134/jeq2013.03.0086
  10. 10. Bhatt R, Kunal, Moulick D, Bárek V, Brestic M, Gaber A, et al. Sustainable strategies to limit nitrogen loss in agriculture through improving its use efficiency aiming to reduce environmental pollution. J Agric Food Res. 2025;22:101957. https://doi.org/10.1016/j.jafr.2025.101957
  11. 11. Asibi AE, Chai Q, Coulter JA. Mechanisms of nitrogen use in maize. Agronomy. 2019;9:775. https://doi.org/10.3390/agronomy9120775
  12. 12. Govindasamy P, Muthusamy SK, Bagavathiannan M, Mowrer J, Jagannadham PTK, Maity A, et al. Nitrogen use efficiency a key to enhance crop productivity under a changing climate. Front Plant Sci. 2023;14:1121073. https://doi.org/10.3389/fpls.2023.1121073
  13. 13. Rochette P, Angers DA, Chantigny MH, Gasser MO, Macdonald JD, Pelster DE, et al. NH3 volatilization, soil NH4+ concentration and soil pH following subsurface banding of urea at increasing rates. Can J Soil Sci. 2013;93(2):261-68. https://doi.org/10.4141/cjss2012-095
  14. 14. Huang S, Gao Y, Li Y, Xu L, Tao H, Wang P. Influence of plant architecture on maize physiology and yield in the Heilongjiang River valley. Crop J. 2017;5(1):52-62. https://doi.org/10.1016/j.cj.2016.06.018
  15. 15. Muranyi E. Effect of plant density and row spacing on maize (Zea mays L.) grain yield in different crop year. J Agric Environ Sci. 2015;2(1):57-63. https://doi.org/10.18380/SZIE.COLUM.2015.1.57
  16. 16. Ladha JK, Fischer KS, Hossain M, Hobbs PR, Hardy B. Improving the productivity and sustainability of rice-wheat systems of the Indo-Gangetic plains: A synthesis of NARS-IRRI partnership research. IRRI Discussion Paper Series. IRRI, Philippines. 2000;40:31. https://doi.org/10.22004/ag.econ.287597
  17. 17. Bhatia A, Agarwal PK, Jain N, Pathak H. Greenhouse gas emission from rice and wheat growing areas in India: Spatial analysis and upscaling. Greenhouse Gas Sci Technol. 2012;2:115-25. https://doi.org/10.1002/ghg.1272
  18. 18. Watson DJ. The physiological basis of variation in yield. Adv Agron. 1952;6:103-9. https://doi.org/10.1016/S0065-2113(08)60307-7
  19. 19. Peng S, Garcia FV, Laza RC, Samico AL, Visperas RM, Cassman KG. Increased N use efficiency using chlorophyll meter on high yielding irrigated rice. Field Crops Res. 1996;47(2):243-52. https://doi.org/10.1016/0378-4290(96)00018-4
  20. 20. Panse VG, Sukhatme PV. Statistical methods for agricultural workers. New Delhi: Indian Council of Agricultural Research; 1985. p. 205-10.
  21. 21. Fromme DD, Spivey TA, Grichar WJ. Agronomic response of corn (Zea mays L.) hybrids to plant populations. Int J Agron. 2019;3589768:1-8. https://doi.org/10.1155/2019/3589768
  22. 22. Kumar S, Basavanneppa MA, Koppalkar BG, Umesh MR, Ashok KG. Calibrating the leaf colour chart for nitrogen management in maize (Zea mays L.) under irrigated condition. Int J Curr Microbiol Appl Sci. 2018;6(11):1030-6. https://doi.org/10.20546/ijcmas.2017.611.120
  23. 23. Fathi A, Farnia A, Maleki A. Effects of biological nitrogen and phosphorus fertilizers on vegetative characteristics, dry matter, and yield of corn. Appl Field Crop Res. 2016;29:1-7. https://doi.org/10.22092/aj.2016.109214
  24. 24. Mathukia RK, Puja R, Dadhania NM. Climate change adaptation real-time nitrogen management in maize (Zea mays L.) using leaf colour chart. Curr World Environ. 2014;9(3):1028-33. https://doi.org/10.12944/CWE.9.3.58
  25. 25. Zothanmawii, Edwin L, Mariam APS. Growth and yield of hybrid maize as influenced by levels of nitrogen and biofertilizer. Int J Curr Microbiol Appl Sci. 2018;7:1864-73. https://doi.org/10.20546/ijcmas.2018.708.214
  26. 26. Datturam K. Need-based nitrogen management using leaf color chart in sweet corn genotypes (Zea mays L.). M.Sc Thesis. Dharwad: University of Agricultural Sciences; 2011.
  27. 27. Kumar S, Basavanneppa MA. Evaluation of leaf colour chart for nitrogen management in hybrid maize (Zea mays L.) under irrigated ecosystem of vertisols. Int J Adv Biol Res. 2017;7(4):675-8.
  28. 28. Ahmad S, Khan AA, Kamran M, Ahmad I, Ali S, Fahad S. Response of maize cultivars to various nitrogen levels. Eur J Exp Biol. 2018;8(1):1-4. https://doi.org/10.21767/2248-9215.100043
  29. 29. Xu W, Liu C, Wang K, Xie R, Ming B, Wang Y, et al. Adjusting maize plant density to different climatic conditions across a large longitudinal distance in China. Field Crops Res. 2017;212:126-34. https://doi.org/10.1016/j.fcr.2017.05.006
  30. 30. Selvakumar D, Velayudham K, Thavaprakaash N. Effect of spatial pattern and nitrogen scheduling on yield attributes, yield, and harvest index in Maize (Zea mays L.). Int J Curr Microbiol Appl Sci. 2017;6(11):3263-71. https://doi.org/10.20546/ijcmas.2017.611.382
  31. 31. Swamy M, Umesh MR, Ananda N, Shanwad UK, Amaregouda A, Manjunath N. Precision nitrogen management for rabi sweet corn (Zea mays L.) through decision support tools. J Farm Sci. 2016;29(1):14-8.
  32. 32. Chittapur BM, Umesh MR, Biradar DP. Decision support tools for nitrogen nutrition in cereals. Kar J Agri Sci. 2015;28(4):446-53.
  33. 33. Fageria NK, Baligar VC, Li YC. The role of nutrient efficient plants in improving crop yields in the twenty-first century. J Plant Nutr. 2008;31(6):1121-57. https://doi.org/10.10.1080/01904160802116068

Downloads

Download data is not yet available.