Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Tagging of cassava mosaic disease resistance gene in cassava (Manihot esculenta Crantz) using simple sequence repeat (SSR) markers

DOI
https://doi.org/10.14719/pst.8561
Submitted
28 March 2025
Published
10-10-2025 — Updated on 20-10-2025
Versions

Abstract

Cassava mosaic disease (CMD) is a major viral disease that causes severe yield loss in cassava cultivation in India. The host plant resistance breeding for CMD is the important strategy to control the disease spread. To understand the nature of disease resistance and identification of simple sequence repeat (SSR) markers closely associated with CMD resistance is important. To study the nature of resistance, seedling and clonal population developed by crossing Sree Jaya (Susceptible) and 9S127 (Resistant) and self-pollinating 9S127 parent were done and the population was evaluated for CMD disease scoring (1-5 scale) at 5 and 8 months after planting. The disease segregate in 1:1 ratio in the F1 and C1F1generation of Sree Jaya × 9S127 cross and 3:1 in the S1, C1S1 self-pollinated progenies of 9S127 parent. It confirms the gene in the resistant parent is heterozygous (Rr) and single dominant gene (RR) is controlling the resistance. In this mapping population, Sri Lankan Cassava Mosaic Virus (SLCMV) is prevalent in all the samples. A total of 14 CMD associated SSR markers were screened in the progenies using bulk segregant analysis (BSA) method. Out of 14 markers, two markers SSRY28, NS158 co-segregate with CMD resistance in the population. These markers can be used for marker assisted selection (MAS) for CMD screening in the seedling population to identify true resistant lines for further breeding trials.

References

  1. 1. Huang J, Bachem C, Jacobsen E, Visser RG. Molecular analysis of differentially expressed genes during postharvest deterioration in cassava (Manihot esculenta Crantz) tuberous roots. Euphytica. 2001;120:85-93. https://doi.org/10.1023/A:1017555605219
  2. 2. Food and Agriculture Organization of the United Nations (FAO). The state of food and agriculture 2010–2011. Women in agriculture closing the gender gap for development. Rome: FAO; 2010.
  3. 3. FAOSTAT (Statistics Division of the Food and Agriculture Organization of the United Nations). Food and agricultural data. Rome: FAO; 2010.
  4. 4. Government of India. Agricultural statistics at a glance. Statistics and Evaluation Division, Ministry of Agriculture and Farmers Welfare. New Delhi: GoI; 2023.
  5. 5. Kumar N, Karuppasami KM, Karuppusamy N, Shanmugam KP, Lakshmanan P, Subramanian S, et al. A combined nutrient/biocontrol agent mixture improve cassava tuber yield and cassava mosaic disease. Agronomy. 2021;11(8):1650. https://doi.org/10.3390/agronomy11081650
  6. 6. Rajendran PG, Nair SG, Easwari Amma CS, Vasudevan K, Sreekumari MT. Cassava breeding, agronomy research and technology transfer in Asia. In: Howler RH, editor. Proceedings of the 4th Regional Workshop; Trivandrum, Kerala, India; 1993. p. 84-96.
  7. 7. Amoakon WJ, Yoboué AA, Pita JS, Mutuku JM, N’Zué B, Combala M, et al. Occurrence of cassava mosaic begomoviruses in national cassava germplasm preserved in two agro-ecological zones of Ivory Coast. Plant Pathol. 2023;72(6):1011-21. https://doi.org/10.1111/ppa.13723
  8. 8. Jennings DL. Breeding for resistance to African cassava mosaic geminivirus in East Africa. Trop Sci. 1994;34(1):110-22.
  9. 9. Thresh JM, Fargette D, Otim-Nape GW. Effects of African cassava mosaic geminivirus on the yield of cassava. Trop Sci. 1994;34:26-42.
  10. 10. Rabbi IY, Hamblin MT, Kumar PL, Gedil MA, Ikpan AS, Jannink JL, et al. High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by-sequencing and its implications for breeding. Virus Res. 2014;186:87-96. https://doi.org/10.1016/j.virusres.2013.12.028
  11. 11. Sivan S, Arya K, Sheela MN, Revathi BS, Krishnan P, Muthusamy SK. Genetic diversity analysis of Indian cassava (Manihot esculenta Crantz) accessions using morphological and molecular markers. S Afr J Bot. 2023;161:347-57. https://doi.org/10.1016/j.sajb.2023.08.027
  12. 12. Fregene M, Angel F, Gómez R, Rodríguez F, Chavarriaga P, Roca W, et al. A molecular genetic map of cassava (Manihot esculenta Crantz). Theor Appl Genet. 1997;95:431-41. https://doi.org/10.1007/s001220050580
  13. 13. Hahn SK, Isoba JC, Ikotun T. Resistance breeding in root and tuber crops at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria. Crop Prot. 1989;8(3):147-68. https://doi.org/10.1016/0261-2194(89)90022-7
  14. 14. Akano AO, Dixon AG, Mba C, Barrera E, Fregene M. Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. Theor Appl Genet. 2002;105:521-5. https://doi.org/10.1007/s00122-002-0891-7
  15. 15. Okogbenin E, Egesi CN, Olasanmi B, Ogundapo O, Kahya S, Hurtado P, et al. Molecular marker analysis and validation of resistance to cassava mosaic disease in elite cassava genotypes in Nigeria. Crop Sci. 2012;52(6):2576-86. https://doi.org/10.2135/cropsci2011.11.0586
  16. 16. Carmo CD, Silva MS, Oliveira GA, Oliveira EJ. Molecular-assisted selection for resistance to cassava mosaic disease in Manihot esculenta Crantz. Sci Agric. 2015;72(6):520-7. http://doi.org/10.1590/0103-9016-2014-0348
  17. 17. Wolfe MD, Rabbi IY, Egesi C, Hamblin M, Kawuki R, Kulakow P, et al. Genome-wide association and prediction reveals genetic architecture of cassava mosaic disease resistance and prospects for rapid genetic improvement. Plant Genome. 2016;9(2):plantgenome2015.11.0118. https://doi.org/10.3835/plantgenome2015.11.0118
  18. 18. Olasanmi B, Kyallo M, Yao N. Marker-assisted selection complements phenotypic screening at seedling stage to identify cassava mosaic disease-resistant genotypes in African cassava populations. Sci Rep. 2021;11(1):2850. https://doi.org/10.1038/s41598-021-82360-8
  19. 19. Ige AD, Olasanmi B, Mbanjo EG, Kayondo IS, Parkes EY, Kulakow P, et al. Conversion and validation of uniplex SNP markers for selection of resistance to cassava mosaic disease in cassava breeding programs. Agronomy. 2021;11(3):420. https://doi.org/10.3390/agronomy11030420
  20. 20. Thuy CT, Lopez-Lavalle LA, Vu NA, Hy NH, Nhan PT, Ceballos H, et al. Identifying new resistance to cassava mosaic disease and validating markers for the CMD2 locus. Agriculture. 2021;11(9):829. https://doi.org/10.3390/agriculture11090829
  21. 21. Michelmore RW, Paran I, Kesseli R. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA. 1991;88(21):9828-32. https://doi.org/10.1073/pnas.88.21.9828
  22. 22. Lokko Y, Danquah EY, Offei SK, Dixon AG, Gedil MA. Molecular markers associated with a new source of resistance to the cassava mosaic disease. Afr J Biotechnol. 2005;4(9):873-81. http://doi.org/10.4314/ajb.v4i9.71131
  23. 23. Olasanmi B, Akoroda MO, Okogbenin E, Egesi C, Kahya SS, Onyegbule O, et al. Bulked segregant analysis identifies molecular markers associated with early bulking in cassava (Manihot esculenta Crantz). Euphytica. 2014;195:235-44. https://doi.org/10.1007/s10681-013-0991-2
  24. 24. Wang P, Cheng L, Pan J, Ma L, Hu X, Zhang Z, et al. A 6.49-Mb inversion associated with the purple embryo spot trait in potato. 3 Biotech. 2025;6:22-32. https://doi.org/10.1007/s42994-025-00197-5
  25. 25. Huang W, Zheng J, Nie B, Li J, Chen R, Nie X, et al. Mapping of a novel locus Ra conferring extreme resistance against potato virus A in cultivated potato (Solanum tuberosum L.). Theor Appl Genet. 2024;137(8):198. https://doi.org/10.1007/s00122-024-04705-x
  26. 26. Hahn SK, Terry ER, Leuschner K. Breeding cassava for resistance to cassava mosaic disease. Euphytica. 1980;29:673-83. https://doi.org/10.1007/BF00023215
  27. 27. Doyle JJ, Doyle JL, Brown AH. A chloroplast-DNA phylogeny of the wild perennial relatives of soybean (Glycine subgenus Glycine): congruence with morphological and crossing groups. Evolution. 1990;44(2):371-89. https://doi.org/10.1111/j.1558-5646.1990.tb05206.x
  28. 28. Mba RE, Stephenson P, Edwards K, Melzer S, Nkumbira J, Gullberg U, et al. Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: towards an SSR-based molecular genetic map of cassava. Theor Appl Genet. 2001;102:21-31. https://doi.org/10.1007/s001220051614
  29. 29. Patil B, Rajasubramaniam S, Bagchi C, Dasgupta I. Both Indian cassava mosaic virus and Sri Lankan cassava mosaic virus are found in India and exhibit high variability as assessed by PCR-RFLP. Arch Virol. 2005;150:389-97. https://doi.org/10.1007/s00705-004-0399-3
  30. 30. Mohan C, Shanmugasundaram P, Maheswaran M, Senthil N, Raghu D, Unnikrishnan M. Mapping new genetic markers associated with CMD resistance in cassava (Manihot esculenta Crantz) using simple sequence repeat markers. J Agric Sci. 2013;5(5):57. http://doi.org/10.5539/jas.v5n5p57

Downloads

Download data is not yet available.