Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Phytochemical screening, GC-MS profiling and in vitro antioxidant activity of leaves of Dysoxylum malabaricum Bedd. ex C. DC.

DOI
https://doi.org/10.14719/pst.8566
Submitted
28 March 2025
Published
17-06-2025 — Updated on 01-07-2025
Versions

Abstract

Plants are a rich source of phytocompounds, have remained an integral part of traditional medicine and serve as alternatives to modern medical treatments. They are powerful sources of antioxidants and the bioactive compounds in plants are associated with a wide range of pharmacological activities. Dysoxylum malabaricum is a species of medium to large-sized trees from the Meliaceae family that is widely found in the Southern Western Ghats and its bark and fruits are used in traditional medicine. Even though it is widely used as ethnomedicinal plant, limited research has been done on its phytochemical constituents, especially the phytocompounds present in the leaves. Therefore, this study aims to extensively explore and identify the phytocompounds and bioactive elements found in the leaf extracts of D. malabaricum. Extract was prepared from leaves of D. malabaricum using soxhlet extraction method in different solvents (methanol, water and chloroform). Quantitative estimation of phytochemicals and in vitro antioxidant assays were carried out, followed by chemical profiling of the extracts using GC-MS, which revealed the presence of many important secondary bioactive compounds. The methanolic extract showed a higher concentration of phenolics (67.88 ± 0.26 mg GAE/g) and flavonoids (57.55 ± 0.23 mg QE/g) when compared to aqueous and chloroform extracts. The methanolic extract also demonstrated remarkable DPPH scavenging (with IC50 value 32.45 ± 0.22 µg/mL) and ferric reduction activities. The results demonstrate that D. malabaricum is an effective source of bioactive and antioxidant compounds.

References

  1. 1. Muhongo MN, Kangogo M, Bii C. Qualitative and quantitative phytochemical profiling of crude fractions of Pechuel-Loeschea leubnitziae leaves. J Med Plants Res. 2021;15(2):64-72. https://doi.org/10.5897/JMPR2020.7073
  2. 2. Shabbir M, Afsar T, Razak S, Almajwal A, Khan MR. Phytochemical analysis and evaluation of hepatoprotective effect of Maytenus royleanus leaves extract against anti-tuberculosis drug induced liver injury in mice. Lipids Health Dis. 2020;19(1):46. https://doi.org/10.1186/s12944-020-01231-9
  3. 3. Ankalge R, Jagdale M, Ghaytidak S, Patil K, Manani L, Desai S. Pharmacognostic evaluation of leaves of Dysoxylum binectariferum. Phytomed Plus. 2021;1(4):100149. https://doi.org/10.1016/j.phyplu.2021.100149
  4. 4. Cytotoxic and anti–inflammatory tirucallane triterpenoids from Dysoxylum binectariferum. Fitoterapia. 2014; 99:86-91. https://doi.org/10.1016/j.fitote.2014.09.010
  5. 5. Mahajan V, Sharma N, Kumar S, Bhardwaj V, Ali A, Khajuria RK, et al. Production of rohitukine in leaves and seeds of Dysoxylum binectariferum: an alternate renewable resource. Pharm Biol. 2015;53(3):446–50. https://doi.org/10.3109/13880209.2014.923006
  6. 6. Jain SK, Meena S, Gupta AP, Kushwaha M, Uma Shaanker R, Jaglan S, et al. Dysoxylum binectariferum bark as a new source of anticancer drug camptothecin: bioactivity-guided isolation and LCMS-based quantification. Bioorg Med Chem Lett. 2014;24(14):31469. https://doi.org/10.1016/j.bmcl.2014.05.001
  7. 7. Dysoxylum binectariferum Hook.f (Meliaceae), a rich source of rohitukine. Fitoterapia. 2010;81(2):145–8. https://doi.org/10.1016/j.fitote.2009.08.010
  8. 8. Mishra SK, Tiwari S, Shrivastava S, Sonkar R, Mishra V, Nigam SK, et al. Pharmacological evaluation of the efficacy of Dysoxylum binectariferum stem bark and its active constituent rohitukine in regulation of dyslipidemia in rats. J Nat Med. 2018;72(4):837-45. https://doi.org/10.1007/s11418-014-0830-3
  9. 9. Wen X, Shi L, Wen G, Li Y, Dong C, Yang J, et al. Green synthesis of carbon nanodots from cotton for multicolor imaging, patterningand sensing. Sens Actuators B Chem. 2015; 221:769-76. https://doi.org/10.1016/j.snb.2015.07.019
  10. 10. Bhardwaj N, Sharma A, Tripathi N, Goel B, Ravikanth G, Kumar Guru S, et al. New cycloartane triterpenoids from Dysoxylum malabaricum and their cytotoxic evaluation. Steroids. 2023; 200:109315. https://doi.org/10.1016/j.steroids.2023.109315
  11. 11. New ring-A modified cycloartane triterpenoids from Dysoxylum malabaricum bark: Isolation, structure elucidation and their cytotoxicity. Steroids. 2024; 205:109390. https://doi.org/10.1016/j.steroids.2024.109390
  12. 12. Bhardwaj N, Swathilakshmi S, Tripathi N, Kumar S, Lal UR, Ravikanth G, et al. Mahamanalactone A, a new triterpenoid from Dysoxylum malabaricum bark: a case study for rapid identification of new metabolites via LC-HRMS profiling and database mining strategy. Nat Prod Res. 2023;1-6. https://doi.org/10.1080/14786419.2023.2298721
  13. 13. Senthil Nathan S, Kalaivani K, Sehoon K. Effects of Dysoxylum malabaricum Bedd. (Meliaceae) extract on the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Bioresour Technol. 2006;97(16):2077-83. https://doi.org/10.1016/j.biortech.2005.09.034
  14. 14. Dalawai D, Murthy HN, Dewir YH, Sebastian JK, Nag A. Phytochemical composition, Bioactive Compoundsand Antioxidant Properties of Different Parts of Nees. Life (Basel) [Internet]. 2023 May 11;13(5). https://doi.org/10.3390/life13051166
  15. 15. Chaitanya LB, Ahalya S, Divya NP, Mounica K, Ravi KA. Phytochemical evaluation of Andrographis paniculata, Cassia angustifolia and Eclipta alba. Ind J Res Pharm Biotechnol. 2017;5(2):160-3.
  16. 16. Shaikh JR, Patil MK. Qualitative tests for preliminary phytochemical screening: An overview. Int J Chem Stud. 2020;8(2):603-8. https://doi.org/10.22271/chemi.2020.v8.i2i.8834
  17. 17. Folin O, Ciocalteu V. On tyrosine and tryptophane determinations in proteins. J Biol Chem. 1927;73(2):627-50. https://doi.org/10.1016/S0021-9258(18)84277-6
  18. 18. Sharifi-Rad M, Epifano F, Fiorito S, Álvarez-Suarez JM. Phytochemical analysis and biological investigation of Nepeta juncea Benth. Different Extracts. Plants . 2020 May;9(5). https://doi.org/10.3390/plants9050646
  19. 19. Spivakovskii GI, Tishchenko AI, Zaslavskii II, Wulfson NS. Calculation of retention indices of compounds from their structural formulae for combined identification by gas chromatography-mass spectrometry. J Chromatogr A. 1977;144(1):1-16. https://doi.org/10.1016/0021-9673(77)80001-0
  20. 20. Suresh A, Xavier J. A pharmacognostic ap proach, including phytochemical and GC-MS analysis, targeted towards the authentication of Strobilanthes jomyi P. Biju, Josekutty, Rekha & J.R.I.Wood. Plant Sci Today. 2023;10(2):232-246. https://doi.org/10.14719/ pst.2104. https://doi.org/10.14719/pst.2104
  21. 21. Gupta M, Karmakar N, Sasmal S, Chowdhury S, Biswas S. Free radical scavenging activity of aqueous and alcoholic extracts of Glycyrrhiza glabra Linn. measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical antioxidant assay. Int J Pharmacol Toxicol. 2016;4(2):235. https://doi.org/10.14419/ijpt.v4i2.6578
  22. 22. Zhao L, Chen J, Su J, Li L, Hu S, Li B, et al. In vitro antioxidant and antiproliferative activities of 5-hydroxymethylfurfural. J Agric Food C hem. 2013;61(44):10604-11. https://doi.org/10.1021/jf403098y
  23. 23. Kong F, Lee BH, Wei K. 5-Hydroxymethylfurfural mitigates lipopolysaccharide-stimulated inflammation via suppression of MAPK, NF-κB and mTOR activation in RAW 264.7 Cells. Molecules. 2019;24(2). https://doi.org/10.3390/molecules24020275https://doi.org/10.3390/molecules24020275
  24. 24. Ganesan T, Subban M, Christopher Leslee DB, Kuppannan SB, Seedevi P. Structural characterization of n-hexadecanoic acid from the leaves of Ipomoea eriocarpa and its antioxidant and antibacterial activities. Biomass Convers Biorefin. 2022;14(13):14547–58. https://doi.org/10.1007/s13399-022-03576-w
  25. 25. Idris N. Potential of hexadecanoic acid as Antimicrobials in bacteria and fungi that cause decay in mustard greens Brassica juncea L. Int J ApplBiol. 2022;6(2):36–42. https://doi.org/10.20956/ijab.v6i2.20198
  26. 26. Xu C, Wu P, Gao J, Zhang L, Ma T, Ma B, et al. Heptadecanoic acid inhibits cell proliferation in PC 9 non small cell lung cancer cells with acquired gefitinib resistance. Oncol Rep. 2019;41(6):3499–507. https://doi.org/10.3892/or.2019.7130
  27. 27. Kakkar S, Narasimhan B. A comprehensive review on biological activities of oxazole derivatives. BMC Chem. 2019;13(1):16. https://doi.org/10.1186/s13065-019-0531-9
  28. 28. Starlin T, Prabha PS, Thayakumar BKA, Gopalakrishnan VK. Screening and GC-MS profiling of ethanolic extract of Tylophora pauciflora. Bioinformation. 2019;15(6):425-9. https://doi.org/10.6026/97320630015425
  29. 29. Sudharsan S, Saravanan R, Shanmugam A, Vairamani S, Kumar RM. Isolation and characterization of octadecanoic acid from the ethyl acetate root extract of Trigonella foneum graecum L. by using hydroponics method. J Bioterror Biodef]. 2011;2(1). https://doi.org/10.4172/2157-2526.1000105
  30. 30. A LRE, Jerah SL, Bin AI. The effect of combination of octadecanoic acid, methyl ester and ribavirin against measles virus. Int J Sci Tech Res. 2013;2(10):181-4.
  31. 31. Nisa S, Bibi Y, Masood S, Ali A, Alam S, Sabir M, et al. Isolation, characterization and anticancer activity of two bioactive compounds from Arisaema flavum (Forssk.) Schott. Molecules. 2022;27(22):7932. https://doi.org/10.3390/molecules27227932
  32. 32. Rojo LE, Villano CM, Joseph G, Schmidt B, Shulaev V, Shuman JL, et al. Wound-healing properties of nut oil from Pouteria lucuma. J Cosmet Dermatol. 2010;9(3):185-95. https://doi.org/10.1111/j.1473-2165.2010.00509.x
  33. 33. El-Gazzar N, Said L, Al-Otibi FO, AbdelGawwad MR, Rabie G. Antimicrobial and cytotoxic activities of natural (Z)-13-docosenamide derived from Penicillium chrysogenum. Front Cell Infect Microbiol. 2025;15. https://doi.org/10.3389/fcimb.2025.1529104
  34. 34. Li GX, Lee MJ, Liu AB, Yang Z, Lin Y, Shih WJ, et al. Δ-tocopherol is more active than α - or γ -tocopherol in inhibiting lung tumorigenesis in vivo.Cancer Prev Res (Phila). 2011;4(3):404-13. https://doi.org/10.1158/1940-6207.CAPR-10-0130
  35. 35. Szewczyk K, Chojnacka A, Górnicka M. Tocopherols and tocotrienols-bioactive dietary compounds; What is certain, what is doubt? Int J Mol Sci. 2021;22(12):6222. https://doi.org/10.3390/ijms22126222
  36. 36. Zhang X, Wang J, Zhu L, Wang X, Meng F, Xia L, et al. Advances in Stigmasterol on its anti-tumor effect and mechanism of action. Front Oncol. 2022; 12:1101289. https://doi.org/10.3389/fonc.2022.1101289
  37. 37. Lestari S, Kurnia D, Mayanti T, Heliawati L. Antimicrobial activities of stigmasterol from Piper crocatum in vitro and in silico. J Chem. 2024;2024(1). https://doi.org/10.1155/2024/2935516
  38. 38. Sundarraj S, Thangam R, Sreevani V, Kaveri K, Gunasekaran P, Achiraman S, et al. γ-Sitosterol from Acacia nilotica L. induces G2/M cell cycle arrest and apoptosis through c-Myc suppression in MCF-7 and A549 cells. J Ethnopharmacol. 2012;141(3):803–9. https://doi.org/10.1016/j.jep.2012.03.014
  39. 39. Sirikhansaeng P, Tanee T, Sudmoon R, Chaveerach A. Major phytochemical as γ-Sitosterol disclosing and toxicity testing in Lagerstroemia species. Evid Based Complement Alternat Med. 2017;2017(1):7209851. https://doi.org/10.1155/2017/7209851
  40. 40. Juárez-Rodríguez MM, Cortes-López H, García-Contreras R, González-Pedrajo B, Díaz-Guerrero M, Martínez-Vázquez M, et al. Tetradecanoic acids with anti-virulence properties increase the pathogenicity of Pseudomonas aeruginosa in a murine cutaneous infection model. Front Cell Infect Microbiol. 2020; 10:597517. https://doi.org/10.3389/fcimb.2020.597517
  41. 41. Ngenge Tamfu A, Mfifen Munvera A, Veronica Dediu Botezatu A, Talla E, Ceylan O, Tagatsing Fotsing M, et al. Synthesis of benzoyl esters of β-amyrin and lupeol and evaluation of their antibiofilm and antidiabetic activities. Results Chem. 2022;4(100322):100322. https://doi.org/10.1016/j.rechem.2022.100322
  42. 42. Zahid S, Malik A, Waqar S, Zahid F, Tariq N, Khawaja AI, et al. Countenance and implication of Β-sitosterol, Β-amyrin and epiafzelechin in nickel exposed Rat: In silico and in vivo approach. Sci Rep. 2023;13(1):21351. https://doi.org/10.1038/s41598-023-48772-4
  43. 43. Bhardwaj M, Sali VK, Mani S, Vasanthi HR. Neophytadiene from Turbinaria ornata suppresses LPS-induced inflammatory response in RAW 264.7 macrophages and sprague dawley rats. Inflammation. 2020;43(3):937–50. https://doi.org/10.1007/s10753-020-01179-z
  44. 44. Gonzalez-Rivera ML, Barragan-Galvez JC, Gasca-Martínez D, Hidalgo-Figueroa S, Isiordia-Espinoza M, Alonso-Castro AJ. In vivo neuropharmacological effects of neophytadiene. Molecules . 2023;28(8). https://doi.org/10.3390/molecules28083457
  45. 45. Ko GA, Cho SK. Phytol suppresses melanogenesis through proteasomal degradation of MITF via the ROS-ERK signaling pathway. Chem Biol Interact. 2018;286:132-40. https://doi.org/10.1016/j.cbi.2018.02.033
  46. 46. Islam MT, Ali ES, Uddin SJ, Shaw S, Islam MA, Ahmed MI, et al. Phytol: A review of biomedical activities. Food Chem Toxicol. 2018; 121:82–94. https://doi.org/10.1016/j.fct.2018.08.032
  47. 47. Huang ZR, Lin YK, Fang JY. Biological and pharmacological activities of squalene and related compounds: Potential uses in cosmetic dermatology. Molecules. 2009;14(1):540-54. https://doi.org/10.3390/molecules14010540
  48. 48. Du X, Ma X, Gao Y. The physiological function of squalene and its application prospects in animal husbandry. Front Vet Sci. 2023;10:1284500. https://doi.org/10.3389/fvets.2023.1284500
  49. 49. Nejjari R, Raji H, Yamari I, Laghmari M, Touhtouh J, Bakhouch M, et al. Semisynthesis of new isoxazolines from (E)-α-atlantone: Antibacterial, antifungal activities, ADME-Tox, molecular docking and molecular dynamics simulations investigations. J Mol Struct. 2024;1312(138579):138579. https://doi.org/10.1016/j.molstruc.2024.138579
  50. 50. Belkacem N, Khettal B, Hudaib M, Bustanji Y, Abu-Irmaileh B, Amrine CSM. Antioxidant, antibacterial and cytotoxic activities of Cedrus atlantica organic extracts and essential oil. Eur J Integr Med. 202;42(101292):101292. https://doi.org/10.1016/j.eujim.2021.101292
  51. 51. Jemal K, Sandeep BV, Pola S. Phytochemical screening and in vitro antioxidant activity analysis of leaf and callus extracts of Allophylus serratus (ROXB) KURZ. Jordan J Pharm Sci. 2022;15(1):51-69. https://doi.org/10.35516/jjps.v15i1.291
  52. 52. Johari MA, Khong HY. Total phenolic content and antioxidant and antibacterial activities of Pereskia bleo. Adv Pharmacol Sci. 2019;2019(1):7428593. https://doi.org/10.1155/2019/7428593
  53. 53. Dalawai D, Niranjana Murthy H. Chemical profile and antioxidant properties of Andrographis producta (C.b.clarke)gamble. PharmacognJ. 2020;13(2):475-85. https://doi.org/10.5530/pj.2021.13.60
  54. 54. Barbouchi M, Elamrani K, El Idrissi M, Choukrad M ’barek. A comparative study on phytochemical screening, quantification of phenolic contents and antioxidant properties of different solvent extracts from various parts of Pistacia lentiscus L. J King Saud Univ Sci. 2020;32(1):302–6 https://doi.org/10.1016/j.jksus.2018.05.010
  55. 55. Kumari S, Gogoi SS, Shamim MZ, Laskar I, Mohanta TK, Penna S, et al. Physicochemical characterization, antioxidant activity and total phenolic content of value-added products from indigenous banana varieties of Assam, India. Measurement: Food. 2022;7(100040):100040. https://doi.org/10.1016/j.meafoo.2022.100040

Downloads

Download data is not yet available.