Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

High temperature stress - Physiological mechanism in crop plants

DOI
https://doi.org/10.14719/pst.8598
Submitted
31 March 2025
Published
10-07-2025

Abstract

High temperature stress is one of the abiotic stresses that hinders plant growth, metabolism and productivity. In plants, numerous physiological and biochemical reactions are temperature dependent. Photosynthesis is the key physiological process, which is directly associated with crop yield and this process is highly sensitive to high temperature stress. High temperature stress induces oxidative damage in cellular organelles through the generation of reactive oxygen species (ROS) that causes lipid peroxidation, protein denaturation and disruption of cell structure. Chloroplast is the primary site of ROS production during the light reaction of photosynthesis, that disrupts thylakoid membrane and reduces the efficiency of photosystem II (PS II), electron transport and ATP synthesis. Enzymes are mostly temperature sensitive and RuBisCO, the key enzyme involved in CO2 fixation process is inactivated due to the destruction of ultrastructure of chloroplast. High temperature stress also reduces the transpiration by inducing partial closure of stomata and thus reduces the uptake of water and nutrients by plants. Respiration rate increases in response to increase in temperature and enhances the utilization of stored carbohydrates leading to an imbalance in energy production and demand. In addition, high temperature stress leads to reduced pollen tube growth and viability, stigma receptivity and fertilization which results in poor seed set. Hence, understanding the physiological and biochemical changes occurs in plants under high temperatures stress conditions is essential for developing heat-tolerant crop varieties and ensuring agricultural sustainability under warm climates. This review is mainly focused on the effects of high temperature stress on photosynthesis, respiration, ROS, plant water relations, nutrient uptake and yield of crops.

References

  1. 1. Assessing the global climate in 2024. (2025, March 5). National Centers for Environmental Information (NCEI). https://www.ncei.noaa.gov/news/global-climate-202413
  2. 2. IPCC-2024. IPCC Reports. https://www.ipcc.ch/2024
  3. 3. Janni M, Maestri E, Gullì M, Marmiroli M, Marmiroli N. Plant responses to climate change, how global warming may impact on food security: a critical review. Frontiers in Plant Science. 2024;14:1297569. https://doi.org/10.3389/fpls.2023.1297569
  4. 4. Zhao Y, Liu S, Yang K, Hu X, Jiang H. Fine control of growth and thermotolerance in the plant response to heat stress. Journal of Integrative Agriculture. 2025;24(2):409-28. https://doi.org/10.1016/j.jia.2024.03.028
  5. 5. Prasad PV, Bheemanahalli R, Jagadish SK. Field crops and the fear of heat stress-opportunities, challenges and future directions. Field Crops Research. 2017;200:114-21. https://doi.org/10.1016/j.fcr.2016.09.024
  6. 6. Fatima Z, Ahmed M, Hussain M, Abbas G, Ul-Allah S, Ahmad S, et al. The fingerprints of climate warming on cereal crops phenology and adaptation options. Scientific Reports. 2020;10(1):18013. https://doi.org/10.1038/s41598-020-74740-3
  7. 7. Vogel E, Donat MG, Alexander LV, Meinshausen M, Ray DK, Karoly D, et al. The effects of climate extremes on global agricultural yields. Environmental Research Letters. 2019;14(5):054010. https://doi.org/10.1088/1748-9326/ab154b
  8. 8. Zachariah M, Mondal A, AghaKouchak A. Probabilistic assessment of extreme heat stress on Indian wheat yields under climate change. Geophysical Research Letters. 2021;48(20):e2021GL094702. https://doi.org/10.1029/2021GL094702
  9. 9. Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, et al. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences. 2017;114(35):9326-31.
  10. https://doi.org/10.1073/pnas.1701762114
  11. 10. Kumar N, Hazra KK, Singh S, Nadarajan N. Constraints and prospects of growing pulses in rice fallows of India Indian Farming. 2017;66(6):13-6.
  12. 11. Alsamir M, Mahmood T, Trethowan R, Ahmad N. An overview of heat stress in tomato (Solanum lycopersicum L.). Saudi Journal of Biological Sciences. 2021;28(3):1654-63. https://doi.org/10.1016/j.sjbs.2020.11.088
  13. 12. Jing P, Wang D, Zhu C, Chen J. Plant physiological, morphological and yield-related responses to night temperature changes across different species and plant functional types. Frontiers in Plant Science. 2016;7:1774.
  14. https://doi.org/10.3389/fpls.2016.01774
  15. 13. Hassan MU, Chattha MU, Khan I, Chattha MB, Barbanti L, Aamer M, et al. Heat stress in cultivated plants: Nature, impact, mechanisms, and mitigation strategies-A review. Plant Biosystems. 2021;155(2):211-34.
  16. https://doi.org/10.1080/11263504.2020.1727987
  17. 14. Moore CE, Meacham-Hensold K, Lemonnier P, Slattery RA, Benjamin C, Bernacchi CJ, et al. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. Journal of Experimental Botany. 2021;72(8):2822-44.
  18. https://doi.org/10.1093/jxb/erab090
  19. 15. Bouvier JW, Emms DM, Kelly S. Rubisco is evolving for improved catalytic efficiency and CO2 assimilation in plants. In: Proceedings of the National Academy of Sciences; U.S.A; 2024;121(11):e2321050121.
  20. https://doi.org/10.1073/pnas.2321050121
  21. 16. Mishra S, Spaccarotella K, Gido J, Samanta I, Chowdhary G. Effects of heat stress on plant-nutrient relations: An update on nutrient uptake, transport, and assimilation. International Journal of Molecular Sciences. 2023;24(21):15670.
  22. https://doi.org/10.3390/ijms242115670
  23. 17. Kumar A, Kaushik P. Heat stress and its impact on plant function: an update. Preprint. 2021.
  24. https://doi.org/10.20944/preprints202108.0489.v1
  25. 18. Parthasarathi T, Firdous S, David EM, Lesharadevi K, Djanaguiraman M. Effects of high temperature on crops. In: Kimatu JN, editor. Advances in plant defense mechanisms. London: IntechOpen Limited; 2020
  26. 19. Liu Y, Li J, Zhu Y, Jones A, Rose RJ, Song Y. Heat stress in legume seed setting: effects, causes, and future prospects. Frontiers in Plant Science. 2019;10:938. https://doi.org/10.3389/fpls.2019.00938
  27. 20. Ruehr NK, Grote R, Mayr S, Arneth A. Beyond the extreme: recovery of carbon and water relations in woody plants following heat and drought stress. Tree Physiology. 2019;39(8):1285-99. https://doi.org/10.1093/treephys/tpz032
  28. 21. Chaves-Barrantes NF, Gutiérrez-Soto MV. Crop physiological responses to high temperature stress. I. Molecular, biochemical and physiological aspects. Agronomía Mesoamericana. 2017;28(1):237-53. https://doi.org/10.15517/am.v28i1.21903
  29. 22. Jagadish SK, Pal M, Sukumaran S, Parani M, Siddique KH. Heat stress resilient crops for future hotter environments. Plant Physiology Reports. 2020;25:529-32. https://doi.org/10.1007/s40502-020-00559-9
  30. 23. Niu Y, Xiang Y. An overview of biomembrane functions in plant responses to high-temperature stress. Frontiers in Plant Science. 2018;9:915. https://doi.org/10.3389/fpls.2018.00915
  31. 24. Wu HC, Bulgakov VP, Jinn TL. Pectin methylesterases: cell wall remodeling proteins are required for plant response to heat stress. Frontiers in Plant Science. 2018;9:1612. https://doi.org/10.3389/fpls.2018.01612
  32. 25. Luo S, Kim C. Current understanding of temperature stress-responsive chloroplast FtsH metalloproteases. International Journal of Molecular Sciences. 2021;22(22):12106. https://doi.org/10.3390/ijms222212106
  33. 26. Khanna-Chopra R, Semwal VK. Ecophysiology and response of plants under high temperature stress. Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I: General Consequences and Plant Responses. 2020:295-329. https://doi.org/10.1007/978-981-15-2156-0_10
  34. 27. Sharma N, Thakur M, Suryakumar P, Mukherjee P, Raza A, Prakash CS, et al. Breathing out'under heat stress-respiratory control of crop yield under high temperature. Agronomy. 2022;12(4):806. https://doi.org/10.3390/agronomy12040806
  35. 28. Malerba M, Crosti P, Cerana R. Effect of heat stress on actin cytoskeleton and endoplasmic reticulum of tobacco BY-2 cultured cells and its inhibition by Co2+. Protoplasma. 2010;239:23-30. https://doi.org/10.1007/s00709-009-0078-z
  36. 29. Hashimoto H, Uragami C, Cogdell RJ. Carotenoids and photosynthesis. In: Stange C, editor. Carotenoids in nature: Biosynthesis, regulation and function. Switzerland: Springer Cham; 2016.p.111-39. https://doi.org/10.1007/978-3-319-39126-7_4
  37. 30. Yüzbaşıoğlu E, Dalyan E, Akpınar I. Changes in photosynthetic pigments, anthocyanin content and antioxidant enzyme activities of maize (Zea mays L.) seedlings under high temperature stress conditions. Trakya University Journal of Natural Sciences. 2017;18(2):97-104.
  38. 31. Zhang S, Zhang A, Wu X, Zhu Z, Yang Z, Zhu Y, et al. Transcriptome analysis revealed expression of genes related to anthocyanin biosynthesis in eggplant (Solanum melongena L.) under high-temperature stress. BMC Plant Biology. 2019;19:1-3. https://doi.org/10.1186/s12870-019-1960-2
  39. 32. Sharkey TD, Zhang R. High temperature effects on electron and proton circuits of photosynthesis. Journal of Integrative Plant Biology. 2010;52(8):712-22. https://doi.org/10.1111/j.1744-7909.2010.00975.x
  40. 33. Wang QL, Chen JH, He NY, Guo FQ. Metabolic reprogramming in chloroplasts under heat stress in plants. International Journal of Molecular Sciences. 2018;19(3):849. https://doi.org/10.3390/ijms19030849
  41. 34. Djanaguiraman M, Boyle DL, Welti R, Jagadish SV, Prasad PV. Decreased photosynthetic rate under high temperature in wheat is due to lipid desaturation, oxidation, acylation, and damage of organelles. BMC Plant Biology. 2018;18:1-7.
  42. https://doi.org/10.1186/s12870-018-1263-z
  43. 35. Camejo D, Rodríguez P, Morales MA, Dell'Amico JM, Torrecillas A, Alarcón JJ. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology. 2005;162(3):281-9.
  44. https://doi.org/10.1016/j.jplph.2004.07.014
  45. 36. Wise RR, Olson AJ, Schrader SM, Sharkey TD. Electron transport is the functional limitation of photosynthesis in field‐grown Pima cotton plants at high temperature. Plant, Cell & Environment. 2004;27(6):717-24.
  46. https://doi.org/10.1111/j.1365-3040.2004.01171.x
  47. 37. Lillo C. Signalling cascades integrating light-enhanced nitrate metabolism. Biochemical Journal. 2008;415(1):11-9.
  48. https://doi.org/10.1042/BJ20081115
  49. 38. Li X, Cai C, Wang Z, Fan B, Zhu C, Chen Z. Plastid translation elongation factor Tu is prone to heat-induced aggregation despite its critical role in plant heat tolerance. Plant Physiology. 2018;176(4):3027-45. https://doi.org/10.1104/pp.17.01672
  50. 39. Perdomo JA, Capó-Bauçà S, Carmo-Silva E, Galmés J. Rubisco and rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit. Frontiers in Plant Science. 2017;8:490. https://doi.org/10.3389/fpls.2017.00490
  51. 40. Sharkey TD. Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell & Environment. 2005;28(3):269-77.
  52. https://doi.org/10.1111/j.1365-3040.2005.01324.x
  53. 41. Sun H, Luan G, Ma Y, Lou W, Chen R, Feng D, et al. Engineered hypermutation adapts cyanobacterial photosynthesis to combined high light and high temperature stress. Nature Communications. 2023;14(1):1238.
  54. https://doi.org/10.1038/s41467-023-36964-5
  55. 42. Hu J, Zhao X, Gu L, Liu P, Zhao B, Zhang J, et al. The effects of high temperature, drought, and their combined stresses on the photosynthesis and senescence of summer maize. Agricultural Water Management. 2023;289:108525.
  56. https://doi.org/10.1016/j.agwat.2023.108525
  57. 43. Prasad PV, Djanaguiraman M. High night temperature decreases leaf photosynthesis and pollen function in grain sorghum. Functional Plant Biology. 2011;38(12):993-1003. https://doi.org/10.1071/FP11035
  58. 44. Impa SM, Vennapusa AR, Bheemanahalli R, Sabela D, Boyle D, Walia H, et al. High night temperature induced changes in grain starch metabolism alters starch, protein, and lipid accumulation in winter wheat. Plant, Cell & Environment. 2020;43(2):431-47. https://doi.org/10.1111/pce.13671
  59. 45. Prasad PV, Pisipati SR, Ristic Z, Bukovnik UR, Fritz AK. Impact of nighttime temperature on physiology and growth of spring wheat. Crop Science. 2008;48(6):2372-80. https://doi.org/10.2135/cropsci2007.12.0717
  60. 46. Du Y, Long C, Deng X, Zhang Z, Liu J, Xu Y, et al. Physiological basis of high nighttime temperature-induced chalkiness formation during early grain-filling stage in rice (Oryza sativa L.). Agronomy. 2023;13(6):1475.
  61. https://doi.org/10.3390/agronomy13061475
  62. 47. Schrader SM, Wise RR, Wacholtz WF, Ort DR, Sharkey TD. Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. Plant, Cell & Environment. 2004;27(6):725-35. https://doi.org/10.1111/j.1365-3040.2004.01172.x
  63. 48. Impa SM, Raju B, Hein NT, Sandhu J, Prasad PV, Walia H, et al. High night temperature effects on wheat and rice: Current status and way forward. Plant, Cell & Environment. 2021;44(7):2049-65. https://doi.org/10.1111/pce.14028
  64. 49. Xu J, Misra G, Sreenivasulu N, Henry A. What happens at night? Physiological mechanisms related to maintaining grain yield under high night temperature in rice. Plant, Cell & Environment. 2021;44(7):2245-61. https://doi.org/10.1111/pce.14046
  65. 50. Kettler BA, Carrera CS, Nalli Sonzogni FD, Trachsel S, Andrade FH, Neiff N. High night temperature during maize post‐flowering increases night respiration and reduces photosynthesis, growth and kernel number. Journal of Agronomy and Crop Science. 2022;208(3):335-47. https://doi.org/10.1111/jac.12589
  66. 51. Mohammed AR, Tarpley L. Impact of high nighttime temperature on respiration, membrane stability, antioxidant capacity, and yield of rice plants. Crop Science. 2009;49(1):313-22. https://doi.org/10.2135/cropsci2008.03.0161
  67. 52. Impa SM, Sunoj VJ, Krassovskaya I, Bheemanahalli R, Obata T, Jagadish SK. Carbon balance and source‐sink metabolic changes in winter wheat exposed to high night‐time temperature. Plant, Cell & Environment. 2019;42(4):1233-46.
  68. https://doi.org/10.1111/pce.13488
  69. 53. Peraudeau S, Lafarge T, Roques S, Quiñones CO, Clement-Vidal A, Ouwerkerk PB, et al. Effect of carbohydrates and night temperature on night respiration in rice. Journal of Experimental Botany. 2015;66(13):3931-44. https://doi.org/10.1093/jxb/erv193
  70. 54. Wahid A, Close TJ. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biologia Plantarum. 2007;51:104-9. https://doi.org/10.1007/s10535-007-0021-0
  71. 55. Sadok W, Lopez JR, Smith KP. Transpiration increases under high‐temperature stress: Potential mechanisms, trade‐offs and prospects for crop resilience in a warming world. Plant, Cell & Environment. 2021;44(7):2102-16.
  72. https://doi.org/10.1111/pce.13970
  73. 56. Feller U, Vaseva II. Extreme climatic events: impacts of drought and high temperature on physiological processes in agronomically important plants. Frontiers in Environmental Science. 2014;2:39.
  74. https://doi.org/10.3389/fenvs.2014.00039
  75. 57. Fricke W. Night-time transpiration-favouring growth?. Trends in Plant Science. 2019;24(4):311-7. https://doi.org/10.1016/j.tplants.2019.01.007
  76. 58. Gambetta GA, Knipfer T, Fricke W, McElrone AJ. Aquaporins and root water uptake. In: Chaumont F, Tyerman S, editors. Plant aquaporins: from transport to signaling. Springer Cham; 2017. p. 133-53. https://doi.org/10.1007/978-3-319-49395-4_6
  77. 59. Cakmak I, Schjoerring JK. Special topics in potassium and magnesium research. Physiologia Plantarum. 2008;133(4):623.
  78. https://doi.org/10.1111/j.1399-3054.2008.01146.x
  79. 60. Johnson VJ, Mirza A. Role of macro and micronutrients in the growth and development of plants. International Journal of Current Microbiology and Applied Sciences. 2020;9:576-87. https://doi.org/10.20546/ijcmas.2020.911.071
  80. 61. Giri A, Heckathorn S, Mishra S, Krause C. Heat stress decreases levels of nutrient-uptake and-assimilation proteins in tomato roots. Plants. 2017;6(1):6. https://doi.org/10.3390/plants6010006
  81. 62. Tiwari M, Kumar R, Min D, Jagadish SK. Genetic and molecular mechanisms underlying root architecture and function under heat stress-A hidden story. Plant, Cell & Environment. 2022;45(3):771-88. https://doi.org/10.1111/pce.14266
  82. 63. Huang B, Rachmilevitch S, Xu J. Root carbon and protein metabolism associated with heat tolerance. Journal of Experimental Botany. 2012;63(9):3455-65. https://doi.org/10.1093/jxb/ers003
  83. 64. Li J, Guo Y, Yang Y. The molecular mechanism of plasma membrane H+-ATPases in plant responses to abiotic stress. Journal of Genetics and Genomics. 2022;49(8):715-25. https://doi.org/10.1016/j.jgg.2022.05.007
  84. 65. Barzana G, Rios JJ, Lopez‐Zaplana A, Nicolas‐Espinosa J, Yepes‐Molina L, Garcia‐Ibañez P, et al. Interrelations of nutrient and water transporters in plants under abiotic stress. Physiologia Plantarum. 2021;171(4):595-619.
  85. https://doi.org/10.1111/ppl.13206
  86. 66. Bhattacharya A. Effect of high-temperature stress on crop productivity. In: Effect of high temperature on crop productivity and metabolism of macro molecules. Academic Press; 2019. https://doi.org/10.1016/B978-0-12-817562-0.00001-X
  87. 67. Nakagawa AC, Ario N, Tomita Y, Tanaka S, Murayama N, Mizuta C, et al. High temperature during soybean seed development differentially alters lipid and protein metabolism. Plant Production Science. 2020;23(4):504-12.
  88. https://doi.org/10.1080/1343943X.2020.1742581
  89. 68. Triantaphylides C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, et al. Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiology. 2008;148(2):960-8.
  90. https://doi.org/10.1104/pp.108.125690
  91. 69. Xu L, Pan R, Zhou M, Xu Y, Zhang W. Lipid remodelling plays an important role in wheat (Triticum aestivum) hypoxia stress. Functional Plant Biology. 2019;47(1):58-66. https://doi.org/10.1071/FP19150
  92. 70. Liang Y, Huang Y, Liu C, Chen K, Li M. Functions and interaction of plant lipid signalling under abiotic stresses. Plant Biology. 2023;25(3):361-78. https://doi.org/10.1111/plb.13507
  93. 71. Medina E, Kim SH, Yun M, Choi WG. Recapitulation of the function and role of ROS generated in response to heat stress in plants. Plants. 2021;10(2):371. https://doi.org/10.3390/plants10020371
  94. 72. Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants. 2021;10(2):277. https://doi.org/10.3390/antiox10020277
  95. 73. Mohammed AR, Cothren JT, Chen MH, Tarpley L. 1‐Methylcyclopropene (1‐MCP)‐induced alteration in leaf photosynthetic rate, chlorophyll fluorescence, respiration and membrane damage in rice (Oryza sativa L.) under high night temperature. Journal of Agronomy and Crop Science. 2015;201(2):105-16. https://doi.org/10.1111/jac.12096
  96. 74. Pospíšil P. Production of reactive oxygen species by photosystem II as a response to light and temperature stress. Frontiers in Plant Science. 2016;7:1950. https://doi.org/10.3389/fpls.2016.01950
  97. 75. Narayanan S, Prasad PV, Fritz AK, Boyle DL, Gill BS. Impact of high night‐time and high daytime temperature stress on winter wheat. Journal of Agronomy and Crop Science. 2015;201(3):206-18. https://doi.org/10.1111/jac.12101
  98. 76. Mohanty P, Kreslavski VD, Klimov VV, Los DA, Mimuro M, Carpentier R, et al. Heat stress: susceptibility, recovery and regulation. In: Eaton-Rye J, Tripathy B, Sharkey T. editors. Photosynthesis. Advances in Photosynthesis and Respiration. Dordrecht: Springer; 2012. p. 251-74. https://doi.org/10.1007/978-94-007-1579-0_12
  99. 77. Divya B, Sandeep G, Meenakshi Amit YK. Effects of high-temperature stress on crop plants. Res. J. Biotechnol. 2023;18(7):157-72. https://doi.org/10.25303/1807rjbt1570172
  100. 78. Vijayakumar A, Beena R. Alterations in carbohydrate metabolism and modulation of thermo-tolerance in tomato under heat stress. International Journal of Environment and Climate Change. 2023;13(9):2798-818.
  101. https://doi.org/10.9734/ijecc/2023/v13i92514
  102. 79. Shao C, Shen L, Qiu C, Wang Y, Qian Y, Chen J, et al. Characterizing the impact of high temperature during grain filling on phytohormone levels, enzyme activity and metabolic profiles of an early indica rice variety. Plant Biology. 2021;23(5):806-18.
  103. https://doi.org/10.1111/plb.13253
  104. 80. Nägele T, Gibon Y, Le Hir R. Plant sugar metabolism, transport and signalling in challenging environments. Physiologia Plantarum. 2022;174(5). https://doi.org/10.1111/ppl.13768
  105. 81. Kohila S, Gomathi R. Adaptive physiological and biochemical response of sugarcane genotypes to high-temperature stress. Indian Journal of Plant Physiology. 2018;23:245-60. https://doi.org/10.1007/s40502-018-0363-y
  106. 82. Zhao H, Dai T, Jiang D, Cao W. Effects of high temperature on key enzymes involved in starch and protein formation in grains of two wheat cultivars. Journal of Agronomy and Crop Science. 2008;194(1):47-54.
  107. https://doi.org/10.1111/j.1439-037X.2007.00283.x
  108. 83. Li N, Euring D, Cha JY, Lin Z, Lu M, Huang LJ, et al. Plant hormone-mediated regulation of heat tolerance in response to global climate change. Frontiers in Plant Science. 2021;11:627969. https://doi.org/10.3389/fpls.2020.627969
  109. 84. Luo Y, Wei Y, Sun S, Wang J, Wang W, Han D, et al. Selenium modulates the level of auxin to alleviate the toxicity of cadmium in tobacco. International Journal of Molecular Sciences. 2019;20(15):3772. https://doi.org/10.3390/ijms20153772
  110. 85. Harada M, Kubotsu T, Agui T, Dai X, Zhao Y, Kasahara H, et al. Investigation of physiological roles of UDP-glycosyltransferase UGT76F2 in auxin homeostasis through the TAA-YUCCA auxin biosynthesis pathway. Bioscience, Biotechnology, and Biochemistry. 2024;88(11):1326-35. https://doi.org/10.1093/bbb/zbae124
  111. 86. Chen Z, Zhou W, Guo X, Ling S, Li W, Wang X, et al. Heat stress responsive Aux/IAA protein, OsIAA29 regulates grain filling through OsARF17 mediated auxin signaling pathway. Rice. 2024;17(1):16. https://doi.org/10.1186/s12284-024-00694-z
  112. 87. Lupepsa BF, Ferrarese-Filho O, Constantin RP, Marchiosi R, dos Santos WD. Gibberellin biosynthesis, its roles in plant physiology and abiotic stress responses. Brazilian Journal of Development. 2024;10(11):e74232. https://doi.org/10.34117/bjdv10n11-003
  113. 88. Srivastava A, Pandey GC. Role of cytokinins and gibberellins in crops response to heat and drought stress. Journal of Cereal Research. 2023;15(2):170-6. https://doi.org/10.25174/2582-2675/2023/136065
  114. 89. Tao Z, Yan P, Zhang X, Wang D, Wang Y, Ma X, et al. Physiological mechanism of abscisic acid-induced heat-tolerance responses to cultivation techniques in wheat and maize. Agronomy. 2022;12(7):1579. https://doi.org/10.3390/agronomy12071579
  115. 90. Mo W, Zheng X, Shi Q, Zhao X, Chen X, Yang Z, et al. Unveiling the crucial roles of abscisic acid in plant physiology: implications for enhancing stress tolerance and productivity. Frontiers in Plant Science. 2024;15:1437184.
  116. https://doi.org/10.3389/fpls.2024.1437184
  117. 91. Sharma M, Negi S, Kumar P, Srivastava DK, Choudhary MK, Irfan M. Fruit ripening under heat stress: The intriguing role of ethylene-mediated signaling. Plant Science. 2023:111820. https://doi.org/10.1016/j.plantsci.2023.111820
  118. 92. Torres CA, Sepúlveda G, Kahlaoui B. Phytohormone interaction modulating fruit responses to photooxidative and heat stress on apple (Malus domestica Borkh.). Frontiers in Plant Science. 2017;8:2129. https://doi.org/10.3389/fpls.2017.02129
  119. 93. Wu C, Cui K, Wang W, Li Q, Fahad S, Hu Q, et al. Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice. Scientific Reports. 2016;6(1):34978. https://doi.org/10.1038/srep34978
  120. 94. Ahmad M, Waraich EA, Skalicky M, Hussain S, Zulfiqar U, Anjum MZ, et al. Adaptation strategies to improve the resistance of oilseed crops to heat stress under a changing climate: An overview. Frontiers in Plant Science. 2021;12:767150.
  121. https://doi.org/10.3389/fpls.2021.767150
  122. 95. Sage TL, Bagha S, Lundsgaard-Nielsen V, Branch HA, Sultmanis S, Sage RF. The effect of high temperature stress on male and female reproduction in plants. Field Crops Research. 2015;182:30-42. https://doi.org/10.1016/j.fcr.2015.06.011
  123. 96. Prasad PV, Djanaguiraman M. Response of floret fertility and individual grain weight of wheat to high temperature stress: sensitive stages and thresholds for temperature and duration. Functional Plant Biology. 2014;41(12):1261-9.
  124. https://doi.org/10.1071/FP14061
  125. 97. Malik S, Zhao D. Epigenetic regulation of heat stress in plant male reproduction. Frontiers in Plant Science. 2022;13:826473. https://doi.org/10.3389/fpls.2022.826473
  126. 98. De Storme N, Geelen D. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant, Cell & Environment. 2014;37(1):1-8. https://doi.org/10.1111/pce.12142
  127. 99. Chen S, Saradadevi R, Vidotti MS, Fritsche-Neto R, Crossa J, Siddique KH, et al. Female reproductive organs of Brassica napus are more sensitive than male to transient heat stress. Euphytica. 2021;217(6):117.
  128. https://doi.org/10.1007/s10681-021-02859-z
  129. 100. Sita K, Sehgal A, HanumanthaRao B, Nair RM, Vara Prasad PV, Kumar S, et al. Food legumes and rising temperatures: Effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Frontiers in Plant Science. 2017;8:1658. https://doi.org/10.3389/fpls.2017.01658
  130. 101. Djanaguiraman M, Narayanan S, Erdayani E, Prasad PV. Effects of high temperature stress during anthesis and grain filling periods on photosynthesis, lipids and grain yield in wheat. BMC Plant Biology. 2020;20:1-2.
  131. https://doi.org/10.1186/s12870-020-02479-0
  132. 102. Richter K, Haslbeck M, Buchner J. The heat shock response: life on the verge of death. Molecular Cell. 2010;40(2):253-66.
  133. https://doi.org/10.1016/j.molcel.2010.10.006
  134. 103. Nayak L, Lal MK, Tiwari RK, Kumar R, Lal P, Das R, et al. A balancing act: exploring the interplay between HSPs and osmoprotectants in temperature stress responses. South African Journal of Botany. 2023;162:64-71.
  135. https://doi.org/10.1016/j.sajb.2023.08.069
  136. 104. Moan S, Negi NP. Heat shock proteins (hsps)-a molecular chaperone for plant protection. Plant Cell Biotechnology and Molecular Biology. 2020;21(17-18):119-29.
  137. 105. Usman MG, Rafii MY, Ismail MR, Malek MA, Latif MA, Oladosu Y. Heat shock proteins: functions and response against heat stress in plants. International Journal of Scientific and Technology Research. 2014;3(11):204-18.
  138. https://doi.org/10.1155/2014/308042
  139. 106. Khan S, Jabeen R, Deeba F, Waheed U, Khanum P, Iqbal N. Heat shock proteins: classification, functions and expressions in plants during environmental stresses. Journal of Bioresource Management. 2021;8(2):85-97.
  140. https://doi.org/10.35691/JBM.1202.0183
  141. 107. Kumar A, Sharma S, Chunduri V, Kaur A, Kaur S, Malhotra N, et al. Genome-wide identification and characterization of heat shock protein family reveals role in development and stress conditions in Triticum aestivum L. Scientific Reports. 2020;10(1):7858. https://doi.org/10.1038/s41598-020-64746-2
  142. 108. Abou-Deif MH, Rashed MA, Khalil KM, Mahmoud FE. Proteomic analysis of heat shock proteins in maize (Zea mays L.). Bulletin of the National Research Centre. 2019;43:1-9. https://doi.org/10.1186/s42269-019-0251-2
  143. 109. Saleem MA, Malik W, Qayyum A, Ul-Allah S, Ahmad MQ, Afzal H, et al. Impact of heat stress responsive factors on growth and physiology of cotton (Gossypium hirsutum L.). Molecular Biology Reports. 2021;48:1069-79. https://doi.org/10.1007/s11033-021-06217-z
  144. 110. Zhang X, Zhang Q, Yang J, Jin Y, Wu J, Xu H, et al. Comparative effects of heat stress at booting and grain-filling stage on yield and grain quality of high-quality hybrid rice. Foods. 2023;12(22):4093. https://doi.org/10.3390/foods12224093
  145. 111. Zhou H, Chen X, Li M, Shi C, Jiang M. Simulation model for assessing high-temperature stress on rice. Agronomy. 2024;14(5):900. https://doi.org/10.3390/agronomy14050900
  146. 112. Li T, Wang S, Liu Q, Zhang X, Chen L, Chen Y, et al. Effects of changing assimilate supply on starch synthesis in maize kernels under high temperature stress. Journal of Integrative Agriculture. 2024. https://doi.org/10.1016/j.jia.2024.08.002
  147. 113. Guan L, Chen Y, Dong X. Impacts of high temperature and vapor pressure deficit on the maize opened spikelet ratio and pollen viability. Agronomy. 2024;14(11):2510. https://doi.org/10.3390/agronomy14112510
  148. 114. Smith A, Gentile BR, Xin Z, Zhao D. The effects of heat stress on male reproduction and tillering in Sorghum bicolor. Food and Energy Security. 2023;12(6):e510. https://doi.org/10.1002/fes3.510
  149. 115. Hu M, Yang M, Liu J, Huang H, Luan R, Yue H, et al. Physiological investigation and transcriptome analysis reveals the mechanisms of Setaria italica's yield formation under heat stress. International Journal of Molecular Sciences. 2024;25(6):3171. https://doi.org/10.3390/ijms25063171
  150. 116. Kastury C, Kumar S, Mishra S, Pradhan J. Impact of combined water deficit and high temperature stress during early seedling stage of finger millet [Eleusine coracana (L.) Gaertn.]. Plant Archives. 2024;24(1):605-10.
  151. https://doi.org/10.51470/PLANTARCHIVES.2024.v24.no.1.082
  152. 117. Pavithra N, Jayalalitha K, Sujatha T, Harisatyanarayana N, Lakshmi NJ, Roja V. Influence of high temperature stress on morpho-physiological and yield traits of blackgram (Vigna mungo L.) Genotypes. International Journal of Environment and Climate Change. 2024;14(2):856-66. https://doi.org/10.9734/ijecc/2024/v14i23999
  153. 118. Gaurav Y. Studies on influence of terminal heat stress on seed yield and seed quality in Chickpea (Cicer arietinum L.) [Thesis]. Chandra Shekhar Azad University of Agriculture and Technology; 2024. https://krishikosh.egranth.ac.in/handle/1/5810209462
  154. 119. Aravind B, Shreeraksha RJ, Poornima R, Ravichandran D, Krishnaraj PU, Chimmad VP, et al. Impact of heat stress on physiological characteristics and expression of heat shock proteins (HSPs) in groundnut (Arachis hypogaea L.). Physiology and Molecular Biology of Plants. 2024;30(10):1691-706. https://doi.org/10.1007/s12298-024-01520-y
  155. 120. Singh DP, Rai N, Farag MA, Maurya S, Yerasu SR, Bisen MS, et al. Metabolic diversity, biosynthetic pathways, and metabolite biomarkers analysed via untargeted metabolomics and the antioxidant potential reveal for high temperature tolerance in tomato hybrid. Plant Stress. 2024;11:100420. https://doi.org/10.1016/j.stress.2024.100420
  156. 121. Choukri H, El Haddad N, Aloui K, Hejjaoui K, El-Baouchi A, Smouni A, et al. Effect of high temperature stress during the reproductive stage on grain yield and nutritional quality of lentil (Lens culinaris Medikus). Frontiers in Nutrition. 2022;9:857469. https://doi.org/10.3389/fnut.2022.857469

Downloads

Download data is not yet available.