Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Rhizosphere borne beneficial microbes for promoting plant growth in calcareous and sodic soils– An overview

DOI
https://doi.org/10.14719/pst.8599
Submitted
31 March 2025
Published
25-08-2025

Abstract

Sodic and calcareous soils are characterized by high sodium and calcium carbonate content. Excess sodium in sodic soils leads to surface crusting and dispersion of clay particles. The presence of calcium carbonate in calcareous soil results in higher soil pH, poor soil structure, low phosphorus availability and low fertility, all of which significantly reduce crop productivity. Effective management of these soils is highly essential for improving soil fertility and ensuring crop productivity, particularly in India, as 6.73 M ha of land are salt affected, whereas 229 M ha are calcareous. Bio-augmenting this problem soil with salt-tolerant beneficial microorganisms has emerged as a promising strategy for addressing these issues. Salt-tolerant bacteria can withstand salt concentrations up to 30 % by accumulating ideal solutes for osmoregulation, producing extracellular proteases and stimulating Na+/ H+ antiporters. These beneficial microorganisms can improve soil structure, increase nutrient availability, promote the leaching of excess salts and solubilize calcium carbonate by producing organic acids. Salt-tolerant plant growth-promoting bacteria could alleviate stress in plants through various mechanisms and this review paper provides an overview of salt-affected soils and the importance of rhizosphere-borne microbes in alleviating salt stress. Integration of microbial strains with traditional soil amendments provides an eco-friendly and effective approach for restoring soil health and promoting sustainable agriculture in sodic and calcareous soils.

References

  1. 1. De Deyn GB, Kooistra L. The role of soils in habitat creation, maintenance and restoration. Philos Trans R Soc Lond B Biol Sci. 2021;376(1834):20200170. https://doi.org/10.1098/rstb.2020.0170
  2. 2. Chiranjeeb K, Kumar S, Rana RS. Soil: A potential source for mitigating food, water and bioenergy crisis. In: Environmental Nexus for Resource Management 2025. CRC Press; 2025. p. 287-301. https://doi.org/10.1201/9781003358169
  3. 3. Tahat MM, Alananbeh KM, Othman YA, Leskovar DI. Soil health and sustainable agriculture. Sustainability. 2020;12(12):4859. https://doi.org/10.3390/su12124859
  4. 4. Yu H, Zou W, Chen J, Chen H, Yu Z, Huang J, et al. Biochar amendment improves crop production in problem soils: A review. J Environ Manag. 2019;232:8-21. https://doi.org/10.1016/j.jenvman.2018.10.117
  5. 5. Khalil HA, Hossain MS, Rosamah E, Azli NA, Saddon N, Davoudpoura Y, et al. The role of soil properties and its interaction towards quality plant fiber: A review. Renew Sustain Energy Rev. 2015;43:1006-15. https://doi.org/10.1016/j.rser.2014.11.073
  6. 6. Fierer N, Wood SA, de Mesquita CP. How microbes can and cannot, be used to assess soil health. Soil Biol Biochem. 2021;153:108111. https://doi.org/10.1016/j.soilbio.2020.108111
  7. 7. Wei B, Yang L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J. 2010;94(2):99-107. https://doi.org/10.1016/j.microc.2009.09.009
  8. 8. Zhang P, Chen Y. Polycyclic aromatic hydrocarbons contamination in surface soil of China: A review. Sci Total Environ. 2017;605:1011-20. https://doi.org/10.1016/j.scitotenv.2017.06.247
  9. 9. Zhang P, Sun H, Yu L, Sun T. Biochar amendment improves crop production in problem soils: A review. J Environ Manag. 2019;232:8-21. https://doi.org/10.1016/j.jenvman.2018.10.117
  10. 10. Brady NC, Weil RR. The Nature and Properties of Soils. 15th ed. Pearson; 2016. https://doi.org/10.2136/sssaj2016.0005br
  11. 11. Paz AM, Amezketa E, Canfora L, Castanheira N, Falsone G, Gonçalves MC, et al. Salt-affected soils: Field-scale strategies for prevention, mitigation and adaptation to salt accumulation. Ital J Agron. 2023;18(2):2166. https://doi.org/10.4081/ija.2023.2166
  12. 12. Fu Z, Wang P, Sun J, Lu Z, Yang H, Liu J, et al. Composition, seasonal variation and salinization characteristics of soil salinity in the Chenier Island of the Yellow River Delta. Glob Ecol Conserv. 2020;24:e01318. https://doi.org/10.1016/j.gecco.2020.e01318
  13. 13. Taalab AS, Ageeb GW, Siam HS, Mahmoud SA. Some characteristics of calcareous soils: A review. Middle East J Agric Res. 2019;8(1):96-105. https://doi.org/10.36632/mejar/2019.8.1.11
  14. 14. Tandon A, Anshu A, Kumar S, Yadav U, Mishra SK, Srivastava S, et al. Trichoderma-primed rice straw alters structural and functional properties of sodic soil. Land Degrad Dev. 2022;33(5):698-709. https://doi.org/10.1002/ldr.4144
  15. 15. Pal DK, Dasog GS, Vadivelu S, Ahuja RL, Bhattacharyya T. Secondary calcium carbonate in soils of arid and semi-arid regions of India. In: Global Climate Change and Pedogenic Carbonates. 2000;p.149-85. https://doi.org/10.1017/CBO9780511535622.010
  16. 16. Maheshwari P, Raj SA. Microbial profile of a calcareous soil of South Tamil Nadu, India. Int J Curr Microbiol Appl Sci. 2020;9(10):3899-907. https://doi.org/10.20546/ijcmas.2020.910.449
  17. 17. Shanmugam PM. Bio-intensive complementary cropping system with organic amendments to achieve higher productivity in sodic soils of Tamil Nadu. Res Crops. 2021;22(4):778-84. https://doi.org/10.31830/2348-7542.2021.130
  18. 18. Kaledhonkar MJ, Meena BL, Sharma PC. Reclamation and nutrient management for salt-affected soils. Indian J Fert. 2019;15(5):566-75. https://doi.org/10.21875/ijf.v15i5.16342
  19. 19. Mandal AK, Obi Reddy GP, Ravisankar T. Digital database of salt-affected soils in India using Geographic Information System. J Soil Salinity Water Qual. 2011;3(1):16-29. https://doi.org/10.1007/s13157-011-0021-2
  20. 20. Ding W, Clode PL, Lambers H. Is pH the key reason why some Lupinus species are sensitive to calcareous soil? Plant Soil. 2019;434:185-201. https://doi.org/10.1007/s11104-018-3752-7
  21. 21. Wahba M, Fawkia LA, Zaghloul A. Management of calcareous soils in arid region. Int J Environ Pollut Environ Model. 2019;2(5):248 58. https://doi.org/10.1016/j.envpol.2019.113658
  22. 22. Bontpart T, Weiss A, Vile D, Gérard F, Lacombe B, Reichheld JP, et al. Growing on calcareous soils and facing climate change. Trends Plant Sci. 2024. https://doi.org/10.1016/j.tplants.2024.03.013
  23. 23. Singare P, Meshram N, Kausadikar H. Calcareous soil and their management: A review. Just Agric. 2022;3:1-6. https://doi.org/10.31018/jans.v14i1.2505
  24. 24. Seelig B. Salinity and sodicity in North Dakota soils. North Dakota State University Extension Service. 2000. https://doi.org/10.2134/jeq1976.00472425000500010013x
  25. 25. Qadir M, Schubert SJ. Degradation processes and nutrient constraints in sodic soils. Land Degrad Dev. 2002;13(4):275-94. https://doi.org/10.1002/ldr.504
  26. 26. Choudhary OP, Yaduvanshi NP. Nutrient management in salt-affected soils. Indian J Fertilisers. 2016;12(12):20-35. https://doi.org/10.1007/s00374-016-1142-5
  27. 27. Shreya Sarkar, Tanaya Dutta, Md Nazmul Hoda, Tinni Roy, Parijat Bhattacharya P. Sodic soil in India: Concept, status and management. Int J Agric Ext Soc Dev. 2024;7(4 Suppl A):531. https://doi.org/10.33545/26180723.2024.v7.i4sa.531
  28. 28. Borkar SG, Reddy P, Ajayasree TS. Bacillus subtilis, a bacterial inhabitant in calcareous soil and its ability to demineralize fixed Fe and Zn salt in its habitat. GSC Adv Res Rev. 2024;18(1):1-9. https://doi.org/10.30574/gscarr.2024.18.1.0482
  29. 29. Amezketa E, Lafarga RA, Pérez P, Bercero A. Techniques for controlling soil crusting and its effect on corn emergence and production. Span J Agric Res. 2003;1(1):101-10. https://doi.org/10.5424/sjar/2003011-16
  30. 30. Maheshwari P, Gayathry G, Prabhavathi SJ, Raj SA. Effect of biofertilizer application on rainfed sorghum in calcareous soil. Int J Farm Sci. 2022;12(4):113-19. https://doi.org/10.5958/2250-0499.2022.00109.4
  31. 31. Samal SK, Kumar R. Nutrient management in calcareous soil. Food Sci Rep. 2020;1(6):3-4. https://doi.org/10.1007/s40003-020-00439-3
  32. 32. Bolan N, Srivastava P, Rao CS, Satyanaraya PV, Anderson GC, Bolan S, et al. Distribution, characteristics and management of calcareous soils. Adv Agron. 2023;182:81-130. https://doi.org/10.1016/bs.agron.2022.11.003
  33. 33. Akhtar MS. Salt stress, microbes and plant interactions: causes and solution. Singapore: Springer Singapore. 2019. https://doi.org/10.1007/978-3-319-96190-3
  34. 34. Irakoze W, Prodjinoto H, Nijimbere S, Bizimana JB, Bigirimana J, Rufyikiri G, et al. NaCl- and Na₂SO₄-induced salinity differentially affect clay soil chemical properties and yield components of two rice cultivars (Oryza sativa L.) in Burundi. Agronomy. 2021;11(3):571. https://doi.org/10.3390/agronomy11030571
  35. 35. Sheoran P, Kumar A, Singh A, Kumar A, Parjapat K, Sharma R, et al. Pressmud alleviates soil sodicity stress in a rice–wheat rotation: Effects on soil properties, physiological adaptation and yield-related traits. Land Degrad Dev. 2021;32(9):2735-48. https://doi.org/10.1002/ldr.3931
  36. 36. Hailu B, Mehari H. Impacts of soil salinity/sodicity on soil water relations and plant growth in dry land areas: A review. J Nat Sci Res. 2021;12(3):1–10. https://doi.org/10.7176/JNSR/12-3-01
  37. 37. Zaman M, Shahid SA, Heng L. Salinity and sodicity adaptation and mitigation options. In: Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. 2018;p.55-89. https://doi.org/10.1007/978-3-319-96190-3_3
  38. 38. Damodaran T, Jha SK, Kumari S, Gupta G, Mishra VK, Sharma PC, et al. Development of halotolerant microbial consortia for salt stress mitigation and sustainable tomato production in sodic soils: An enzyme mechanism approach. Sustainability. 2023;15(6):5186. https://doi.org/10.3390/su15065186
  39. 39. Maurya PK, Bahadur V, Thakur G. Effect of salinity and sodicity on vegetable production and remedial measures: A review. Int J Plant Soil Sci. 2022;34(18):259-76. https://doi.org/10.9734/ijpss/2022/v34i183106
  40. 40. Surya M, Baskar M, Meena S, Janaki D, Geethanjali S, Sundar M. Evaluation of physiological and biochemical traits in relation to sodicity tolerance in selected rice genotypes under different sodicity levels. Agric Sci Dig. 2023;43(6):796-801. https://doi.org/10.18805/ag.D-5857
  41. 41. Curtin D, Naidu R. Fertility constraints to plant production. In: Sodic soils: distribution, properties, management and environmental consequences. Oxford University Press. 1998;p.107-23. https://doi.org/10.1071/SR9930683
  42. 42. Johnston VE, Martín-Pérez A, Skok S, Mulec J. Microbially-mediated carbonate dissolution and precipitation; towards a protocol for ex-situ, cave-analogue cultivation experiments. Int J Speleol. 2021;50(2):3. https://doi.org/10.5038/1827-806X.50.2.2367
  43. 43. Peper A, Brenneman T, Yang L. Calcite dissolving bacteria from peanut (Arachis hypogaea) pegging zone influences soil calcium level. Front Microbiomes. 2022;1:1019134. https://doi.org/10.3389/fmicb.2022.1019134
  44. 44. Rashad YM, Hafez M, Rashad M. Diazotrophic Azotobacter salinestris YRNF3: a probable calcite-solubilizing bio-agent for improving the calcareous soil properties. Sci Rep. 2023;13(1):20621. https://doi.org/10.1038/s41598-023-46635-0
  45. 45. Jacobson AD, Wu L. Microbial dissolution of calcite at T = 28 °C and ambient pCO₂. Geochim Cosmochim Acta. 2009;73(8):2314-31. https://doi.org/10.1016/j.gca.2009.02.010
  46. 46. Sulu-Gambari FB. Bacterially-induced dissolution of calcite: the role of bacteria in limestone weathering. 2011. https://escholarship.mcgill.ca/concern/theses/3n2043084
  47. 47. Tamilselvi SM, Thiyagarajan C, Uthandi S. Calcite dissolution by Brevibacterium sp. SOTI06: A futuristic approach for the reclamation of calcareous sodic soils. Front Plant Sci. 2016;7:1828.https://doi.org/10.3389/fpls.2016.01828
  48. 48. Rana G, Mandal T, Mandal NK, Sakha D, Meikap BC. Calcite solubilization by bacteria: A novel method of environment pollution control. Geomicrobiol J. 2015;32(9):846-52. https://doi.org/10.1080/01490451.2014.1001459
  49. 49. Al-Otaibi MB, Al-Moajil AM, Nasr-El-Din HA. In-situ acid system to clean up drill-in fluid damage in high-temperature gas wells. In: IADC/SPE Asia Pacific drilling technology conference and exhibition. 2006;p. SPE-103846. https://doi.org/10.2118/103846-MS
  50. 50. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-54. https://doi.org/10.1016/0003-2697(76)90527-3
  51. 51. Vidyalakshmi R, Paranthaman R, Bhakyaraj R. Sulphur oxidizing bacteria and pulse nutrition-a review. World J Agric Sci. 2009;5(3):270-8. https://doi.org/10.1016/B978-0-443-13193-6.00020-8
  52. 52. Tabatabai MA. Sulfur in agriculture. Madison (WI): American Society of Agronomy Inc. 1986. https://doi.org/10.2134/agronmonogr27.c5
  53. 53. Sharma S, Kulkarni J, Jha B. Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Front Microbiol. 2016;7:1600. https://doi.org/10.3389/fmicb.2016.01600
  54. 54. Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 2003;218:1-4. https://doi.org/10.1007/s00425-003-1105-5
  55. 55. Zörb C, Geilfus CM, Dietz KJ. Salinity and crop yield. Plant Biol. 2019;21:31-8. https://doi.org/10.1111/plb.12884
  56. 56. Litalien A, Zeeb B. Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Sci Total Environ. 2020;698:134235. https://doi.org/10.1016/j.scitotenv.2019.134235
  57. 57. Munns R, Passioura JB, Colmer TD, Byrt CS. Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol. 2020;225(3):1091-6. https://doi.org/10.1111/nph.15862
  58. 58. Tahir M, Ahmad I, Shahid M, Shah GM, Farooq AB, Akram M, et al. Regulation of antioxidant production, ion uptake and productivity in potato (Solanum tuberosum L.) plant inoculated with growth promoting salt tolerant Bacillus strains. Ecotoxicol Environ Saf. 2019;178:33-42. https://doi.org/10.1016/j.ecoenv.2019.04.125
  59. 59. Yazhini G, Subramanium T, Manikandan A, Selvi D, Anandham R. Sodic-tolerant plant growth-promoting rhizobacteria mediated sodic stress alleviation in plants. In: Plant-Microbe Interaction and Stress Management. Singapore: Springer Nature Singapore. 2024;p. 247–64. http://doi.org/10.1007/978-981-99-3621-3_15
  60. 60. Dixit VK, Misra S, Mishra SK, Tewari SK, Joshi N, Chauhan PS. Characterization of plant growth-promoting alkalotolerant Alcaligenes and Bacillus strains for mitigating the alkaline stress in Zea mays. Antonie Van Leeuwenhoek. 2020;113(7):889–905. http://doi.org/10.1007/s10482-020-01398-7
  61. 61. Nunkaew T, Kantachote D, Nitoda T, Kanzaki H, Ritchie RJ. Characterization of exopolymeric substances from selected Rhodopseudomonas palustris strains and their ability to adsorb sodium ions. Carbohydrate Polymers. 2015;115:334–41. http://doi.org/10.1016/j.carbpol.2014.08.051
  62. 62. Upadhyay SK, Singh JS, Saxena AK, Singh DP. Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biology. 2012;14(4):605–11. http://doi.org/10.1111/j.1438-8677.2011.00533.x
  63. 63. Gunasekaran Y, Thiyageshwari S, Ariyan M, Roy Choudhury A, Park JH, Selvi D, et al. Alleviation of sodic stress in rice by exploring the exopolysaccharide-producing sodic-tolerant bacteria. Agriculture. 2022;12(9):1451. http://doi.org/10.3390/agriculture12091451
  64. 64. Herdiyantoro D, Setiawati MR, Simarmata T, Nurlaeny N, Joy B, Hamdani JS, et al. The ability of potassium solubilizing rhizo-bacteria isolated from maize rhizosphere for microbial fertilizer. In: IOP Conference Series: Earth and Environmental Science. 2018;205(1):012011. http://doi.org/10.1088/1755-1315/205/1/012011
  65. 65. Sarkar A, Ghosh PK, Pramanik K, Mitra S, Soren T, Pandey S, et al. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Research in Microbiology. 2018;169(1):20–32. http://doi.org/10.1016/j.resmic.2017.10.002
  66. 66. Ram B, Chouhan S, Priyadarshi R, Kumar R, Sinha SK, Kumari S. Enhancing soil fertility in calcareous soil through sulphitated press mud (SPM), Trichoderma viride and biofertilizer integration in sugarcane (Saccharum officinarum L.). Journal of Eco-friendly Agriculture. 2024;19(2):417–23. https://doi.org/10.1080/03650340.2022.2099541
  67. 67. Wahid F, Fahad S, Danish S, Adnan M, Yue Z, Saud S, et al. Sustainable management with mycorrhizae and phosphate solubilizing bacteria for enhanced phosphorus uptake in calcareous soils. Agriculture. 2020;10(8):334. http://doi.org/10.3390/agriculture10080334
  68. 68. Lombardo S, Abbate C, Pandino G, Parisi B, Scavo A, Mauromicale G. Productive and physiological response of organic potato grown under highly calcareous soils to fertilization and mycorrhization management. Agronomy. 2020;10(8):1200. http://doi.org/10.3390/agronomy10081200
  69. 69. Ram B, Chouhan S, Tutlani A, Kumar R, Sinha SK, Kumari S. Optimizing sugarcane productivity and soil nutrient uptake with sulphitated press mud (SPM), phosphorus solubilizing bacteria (PSB) and Trichoderma viride integration in calcareous soil. Plant Archives. 2024;24(1):122–30. https://doi.org/10.51470/PLANTARCHIVES.2024.v24.no.1.018
  70. 70. Ganzour S, Ghabour T, Hemeid NM, Khatab KA. Impact of biofertilizers on maize (Zea mays L.) growth and yield under calcareous soil conditions. Egyptian Journal of Soil Science. 2020;60(4):469–83. https://doi.org/10.21608/ejss.2020.45922.1392
  71. 71. Nadeem SM, Hanif A, Khan MY, Waqas MR, Ahmad Z, Ashraf MR, et al. Elemental sulphur with sulphur oxidizing bacteria enhances phosphorus availability and improves growth and yield of wheat in calcareous soil. Archives of Agronomy and Soil Science. 2023;69(9):1494–502. http://doi.org/10.1080/03650340.2022.2155674
  72. 72. Li H, Chen S, Wang M, Shi S, Zhao W, Xiong G, et al. Phosphate solubilization and plant growth properties are promoted by a lactic acid bacterium in calcareous soil. Applied Microbiology and Biotechnology. 2024;108(1):24. http://doi.org/10.1007/s00253-023-12679-w
  73. 73. El_Komy MH, Hassouna MG, Abou-Taleb EM, Al-Sarar AS, Abobakr Y. A mixture of Azotobacter, Azospirillum and Klebsiella strains improves root-rot disease complex management and promotes growth in sunflowers in calcareous soil. European Journal of Plant Pathology. 2020;156(3):713–26. http://doi.org/10.1007/s10658-020-01957-3
  74. 74. Rady MM, El-Shewy AA, Seif El-Yazal MA, Abd El-Gawwad IF. Integrative application of soil P-solubilizing bacteria and foliar nano P improves Phaseolus vulgaris plant performance and antioxidative defense system components under calcareous soil conditions. Journal of Soil Science and Plant Nutrition. 2020;20:820–39. http://doi.org/10.1007/s42729-020-00193-8
  75. 75. Mohamed AE, Nessim MG, Abou-El-Seoud II, Darwish KM, Shamseldin A. Isolation and selection of highly effective phosphate solubilizing bacterial strains to promote wheat growth in Egyptian calcareous soils. Bulletin of the National Research Centre. 2019;43:1–3. http://doi.org/10.1186/s42269-019-0130-z
  76. 76. Bamagoos AA, Alharby HF, Belal EE, Khalaf AE, Abdelfattah MA, Rady MM, et al. Phosphate-solubilizing bacteria as a panacea to alleviate stress effects of high soil CaCO₃ content in Phaseolus vulgaris with special reference to P-releasing enzymes. Sustainability. 2021;13(13):7063. http://doi.org/10.3390/su13137063
  77. 77. Abbaszadeh-Dahaji P, Masalehi F, Akhgar A. Improved growth and nutrition of sorghum (Sorghum bicolor) plants in a low-fertility calcareous soil treated with plant growth–promoting rhizobacteria and Fe-EDTA. Journal of Soil Science and Plant Nutrition. 2020;20(1):31–42. http://doi.org/10.1007/s42729-019-00129-w
  78. 78. Egamberdieva D, Wirth S, Bellingrath-Kimura SD, Mishra J, Arora NK. Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Frontiers in Microbiology. 2019;10:2791. https://doi.org/10.3389/fmicb.2019.02791
  79. 79. Agarwal P, Mishra K, Singh PC. Integrated application of Trichoderma mixture and NPK enhances the rice productivity in sodic soil. Int J Plant Environ. 2022;8(2):128–32. https://doi.org/10.18811/ijpen.v8i02.06
  80. 80. Trivedi P, Singh K, Pankaj U, Verma SK, Verma RK, Patra DD. Effect of organic amendments and microbial application on sodic soil properties and growth of an aromatic crop. Ecological Engineering. 2017;102:127–36. https://doi.org/10.1016/j.ecoleng.2017.01.046
  81. 81. Shilev S. Plant-growth-promoting bacteria mitigating soil salinity stress in plants. Applied Sciences. 2020;10(20):7326. http://doi.org/10.3390/app10207326
  82. 82. Singh YP, Arora S, Mishra VK, Singh AK. Synergizing microbial enriched municipal solid waste compost and mineral gypsum for optimizing rice–wheat productivity in sodic soils. Sustainability. 2022;14(13):7809. http://doi.org/10.3390/su14137809
  83. 83. Damodaran T, Mishra VK, Jha SK, Pankaj U, Gupta G, Gopal R. Identification of rhizosphere bacterial diversity with promising salt tolerance, PGP traits and their exploitation for seed germination enhancement in sodic soil. Agricultural Research. 2019;8:36–43. http://doi.org/10.1007/s40003-018-0382-7
  84. 84. Richardson AE. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Functional Plant Biology. 2001;28(9):897–906. https://doi.org/10.1071/PP01093
  85. 85. Lee SY, Kim EG, Park JR, Ryu YH, Moon W, Park GH, et al. Effect on chemical and physical properties of soil each peat moss, elemental sulfur and sulfur-oxidizing bacteria. Plants. 2021;10(9):1901. https://doi.org/10.3390/plants10091901

Downloads

Download data is not yet available.