Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Molecular docking and dynamic simulation studies against the ERα of breast cancer using biomolecules from Asparagus aethiopicus L.

DOI
https://doi.org/10.14719/pst.8614
Submitted
1 April 2025
Published
31-10-2025
Versions

Abstract

Globally, breast cancer is the major cause of mortality among women, with a significant proportion of cases associated with estrogen receptor alpha (ERα)-positive subtypes. Targeting ERα has emerged as a promising therapeutic strategy for effective management of breast cancer. This study explores the anticancer potential of bioactive secondary metabolites from the root tubers of Asparagus aethiopicus L. against ERα using a comprehensive in silico approach. Gas Chromatography-Mass Spectrometry (GC-MS) has been utilized to analyze the methanolic extracts of the root tubers. A total of 25 different phytochemicals were screened initially for drug likeness property using Lipinski’s rule of five. Out of eight phytomolecules were selected based on their pharmacokinetic and absorption, distribution, metabolism, excretion and toxicity (ADMET) profiles. Further, six molecules were subjected for molecular docking analysis to assess binding affinity against ERα followed by Molecular Dynamics (MD) simulations, binding free energy (ΔG) calculations, Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) and PCA analysis. Drug-likeness assessments based on Lipinski’s rule identified Pent-3-ene-2-one, 3-phenyl-oxime, Hydroperoxide1-methylbutyl and 4-Hydroxy-2-butanone as promising drug candidates. Molecular docking studies revealed strong interactions with the active site of ERα, whose binding energies vary from -3.8 to -7.3 kcal/mol. These 3 phytomolecules form stable hydrogen bonds with the critical residues of active sides of ERα viz. Glu353, Leu387, Arg394 and Lys449. The structural stability and minimal conformational alterations of ERα with ligand binding was confirmed by MD simulations. The stability of the protein-ligand complexes was supported by Root Mean Square Deviation (RMSD) with minimal deviation in RMSD (<0.6 nm), Root Mean Square Fluctuation (RMSF), Radius of Gyration (Rg) and with Solvent Accessible Surface Area (SASA) which indicates stable protein compactness. Moreover, PCA revealed dominant motions with minimal fluctuation in PC3, suggesting highly stabilized complexes. Hydrogen bond analysis highlighted stable and optimal interaction throughout the simulation. Among the tested compounds, Pent-3-ene-2-one, 3-phenyl-oxime exhibited the lowest binding free energy. This is primarily driven by Vander Waals interactions and polar solvation energy, indicating superior binding affinity. Thus, these finding explains the potential of A. aethiopicus phytochemicals as potent ERα inhibitors and provide a base for future in vitro and in vivo investigation into their application in breast cancer therapy.

References

  1. 1. Choudhir G, Kumar S, Kumar A. Targeting telomeric RNA quadruplexes with natural metabolites to prevent cancer. In silico Pharmacology. 2024;12:112. https://doi.org/10.1007/s40203-024-00283-4
  2. 2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: A Cancer Journal for Clinicians. 2011;61(2):69-90. https://doi.org/10.3322/caac.20107
  3. 3. Boyer JA, Gadal S, Rosen EY, Sharma M, Dorso MA, Maid N, et al. eIF4A controls translation of estrogen receptor alpha and is a therapeutic target in advanced breast cancer. Proceedings of the National Academy of Sciences. 2025;122(30):e2424286122. https://doi.org/10.1073/pnas.2424286122
  4. 4. Rugo HS, Rumble RB, Macrae E, Barton DL, Connolly HK, Dickler MN, et al. Endocrine therapy for hormone receptor-positive metastatic breast cancer: American Society of Clinical Oncology guideline. Journal of Clinical Oncology. 2016;34(25):3069-103. https://doi.org/10.1200/JCO.2016.67.1487
  5. 5. Torre LA, Bray F, Siegel R, Ferlay J, Lortet‐Tieulent J, Jemal A. Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians. 2015;65(2):87-108. https://doi.org/10.3322/caac.21262
  6. 6. Sahayarayan JJ, Rajan KS, Vidhyavathi R, Nachiappan M, Prabhu D, Alfarraj S, et al. In-silico protein-ligand docking studies against the estrogenprotein of breast cancer using pharmacophore based virtual screening approaches. Saudi Journal of Biological Sciences. 2021;28(1):400-7. https://doi.org/10.1016/j.sjbs.2020.10.023
  7. 7. Altwegg KA, Vadlamudi RK. Role of estrogen receptor coregulators in endocrine resistant breast cancer. Exploration of Targeted Anti-tumor Therapy. 2021;2:385-400. https://doi.org/10.37349/etat.2021.00052
  8. 8. Mangani S, Piperigkou Z, Karamanos NK, Koletsis NE, Ioannou P. Estrogen receptors and extracellular matrix: the critical interplay in cancer development and progression. The FEBS Journal. 2025;292(7):1558-72. https://doi.org/10.1111/febs.17270
  9. 9. Germain P, Staels B, Dacquet C, Spedding M, Laudet V. Overview of nomenclature of nuclear receptors. Pharmacological Reviews. 2006;58(4):685-704. https://doi.org/10.1124/pr.58.4.2
  10. 10. Kumar R, Zakharov MN, Khan SH, Miki R, Jang H, Toraldo G, et al. The dynamic structure of the estrogen receptor. Journal of Amino Acids. 2011;2011:812540. https://doi.org/10.4061/2011/812540
  11. 11. Ng HW, Perkins R, Tong W, Hong H. Versatility or promiscuity: The estrogen receptors, control of ligand selectivity and an update on subtype selective ligands. International Journal of Environmental Research and Public Health. 2014;11(9):8709-42. https://doi.org/10.3390/ijerph110908709
  12. 12. Kumar V, Chambon P. The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell. 1988;55(1):145-56. https://doi.org/10.1016/0092-8674(88)90017-7
  13. 13. Jakacka M, Ito M, Weiss J, Chien PY, Gehm BD, Jameson JL. Estrogen receptor binding to DNA is not required for its activity through the nonclassical AP1 pathway. The Journal of Biological Chemistry. 2001;276(17):13615-21. https://doi.org/10.1074/jbc.M008384200
  14. 14. Agabio R, Madeddu C, Contu P, Cosentino S, Deiana M, Massa E, et al. Alcohol consumption is a modifiable risk factor for breast cancer: are women aware of this relationship. Alcohol and Alcoholism. 2022;57(5):533-9. https://doi.org/10.1093/alcalc/agab042
  15. 15. Badodekar N, Sharma A, Patil V, Telang G, Sharma R, Patil S, et al. Angiogenesis induction in breast cancer: A paracrine paradigm. Cell Biochemistry and Function. 2021;39(7):860-73. https://doi.org/10.1002/cbf.3663
  16. 16. Jain P, Kumar V, Teotia D, Goyal H, Agrawal A, Malik V. Phytochemical Composition of Sidarhombifolia ssp. retusa (L.) Bross.: a comprehensive GC/MS analysis. Xi'an Shiyou DaxueXuebao (Ziran Kexue Ban)/Journal of Xi'an Shiyou University, Natural Sciences Edition. 2024;67(1):103-23. https://doi.org/10.5281/zenodo.10578898
  17. 17. Jain P, Kumar S, Kumar V, Agrawal A, Teotia D, Kumar A, et al. Unraveling phytochemical diversity and medicinal potential of Sida rhombifolia complex: a chemotaxonomic investigation from Northern India. Bioscene. 2024;21(4):572-603.
  18. 18. Teotia D, Agrawal A, Kumar V, Jain P, Kumar A, Agrawal B, et al. Ethnobotany, phytochemistry and biological activities of the genus Allium L. Environment Conservation Journal. 2025;26(3):1058-76. https://doi.org/10.36953/ECJ.32103049
  19. 19. Teotia D, Agrawal A, Goyal H, Jain P, Singh V, Verma Y, et al. Pharmacophylogeny of genus Allium L. Journal of King Saud University-Science. 2024;36(8):103330. https://doi.org/10.1016/j.jksus.2024.103330
  20. 20. Singla R, Jaitak V. Molecular docking simulation study of phytoestrogens from Asparagus racemosus in breast cancer progression. International Journal of Pharmaceutical Sciences and Research. 2015;6(1):172. http://dx.doi.org/10.13040/IJPSR.0975-8232.6(1).172-82
  21. 21. Divyalakshmi MV, Thoppil JE. Molecular docking of phytochemicals against breast cancer: a review. Plant Archives. 2022;22(2):163-73. https://doi.org/10.51470/PLANTARCHIVES.2022.v22.no2.029
  22. 22. Yang C, Ye Z, Mao L, Zhang L, Zhang J, Ding W, et al. Analysis of volatile organic compounds and metabolites of three cultivars of Asparagus (Asparagus officinalis L.) using E-nose, GC-IMS, and LC-MS/MS. Bioengineered. 2022;13(4):8866-80. https://doi.org/10.1080/21655979.2022.2056318
  23. 23. Pedrosa RC, Felipe KB, Wilhelm FD. Oncogenic PI3KT/Akt/mTOR pathway alterations, ROS homeostasis, targeted cancer therapy and drug resistance. Frontiers in Oncology. 2024;14:1372376. https://doi.org/10.3389/fonc.2024.1372376
  24. 24. Straley GB, Utech FH. Flora of North America. Vo. 26. FNA. http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=102837
  25. 25. Linne CV. Car. a Linne Mantissa plantarum : Generum (editionis VI). et specierum editionis II, Impensis Direct. Laurentii Salvii. 1767;1:63. https://doi.org /10.5962/bhl.title.69083
  26. 26. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2025 update. Nucleic Acids Research. 2025;53(D1):D1516-25. https://doi.org/10.1093/nar/gkae1059
  27. 27. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. Journal of Cheminformatics. 2011;3:1-14. https://doi.org/10.1186/1758-2946-3-33
  28. 28. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucleic Acids Research. 2000;28:235-42. https://doi.org/10.1093/nar/28.1.235
  29. 29. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry. 2009;30(16):2785-91. https://doi.org/10.1002/jcc.21256
  30. 30. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports. 2017;7(1):42717. https://doi.org/10.1038/srep42717
  31. 31. Huey R, Morris GM, Forli S. Using AutoDock 4 and AutoDock vina with AutoDockTools: a tutorial. The Scripps Research Institute Molecular Graphics Laboratory. 2012;10550(92037):1000.
  32. 32. Lindorff‐Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, et al. Improved side‐chain torsion potentials for the Amber ff99SB protein force field. Proteins: Structure, Function, and Bioinformatics. 2010;78(8):1950-8. https://doi.org/10.1002/prot.22711
  33. 33. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: fast, flexible, and free. Journal of Computational Chemistry. 2005;26(16):1701-18. https://doi.org/10.1002/jcc.20291
  34. 34. Kagami L, Wilter A, Diaz A, Vranken W. The ACPYPE web server for small-molecule MD topology generation. Bioinformatics. 2023;39(6):350. https://doi.org/10.1093/bioinformatics/btad350
  35. 35. Hess B, Bekker H, Berendsen HJ, Fraaije JG. LINCS: a linear constraint solver for molecular simulations. Journal of Computational Chemistry. 1997;18(12):1463-72. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  36. 36. Berendsen HJ, Postma JV, VanGunsteren WF, Dinola ARH J, Haak JR. Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics. 1984;81(8):3684-90. https://doi.org/10.1063/1.448118
  37. 37. Kumari R, Kumar R, Consortium O, Lynn A. g_mmpbsa-A GROMACS tool for high-throughput MM-PBSA Calculations. Journal of Chemical Information and Modeling. 2014;54(7):1951-62. https://doi.org/10.1021/ci500020m
  38. 38. Sloggett C, Goonasekera N, Amp AE. BioBlend: automating pipeline analyses within Galaxy and CloudMan. Bioinformatics. 2013;29(13):1685-6. https://doi.org/10.1093/bioinformatics/btt199
  39. 39. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews. 1997;23(1-3):3-25. https://doi.org/10.1016/j.addr.2012.09.019
  40. 40. Seeliger D, De Groot BL. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design. 2010;24(5):417-22. https://doi.org/10.1007/s10822-010-9352-6
  41. 41. Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling. 2011;51(10). https://doi.org/10.1021/ci200227u
  42. 42. Agu PC, Afiukwa CA, Orji OU, Ezeh EM, Ofoke IH, Ogbu CO, et al. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Scientific Reports. 2023;13(1):13398. https://doi.org/10.1038/s41598-023-40160-2
  43. 43. Farhad M, Bhuiyan MIH, Uddin SM, Chowdhury MHM, Huda MN, Khan MF, et al. Anticancer potential of isolated phytochemicals from Ocimum sanctum against breast cancer: In silico molecular docking approach. World Journal of Pharmaceutical Research. 2016;5(12):1232-9. https://doi.org/10.20959/wjpr201612-7511
  44. 44. Afrin S, Uddin N, Mehjabin KZ, Niketa TK, Nesa F, Akther S, et al. In silico molecular docking approach of some selected isolated phytochemicals from Phyllanthus emblic against breast cancer. Biomedical Journal of Scientific & Technical Research. 2018;10(2):1-5. https://doi.org/10.26717/BJSTR.2018.10.001917
  45. 45. Majumder M, Khanam T, Rahaman M, Rahimul M, Hossain TN, Chakrabarty N. Anticancer potential of isolated phytochemical from terminalia bellerica against breast cancer: in silico molecular docking approach. World Journal of Pharmaceutical Research. 2017;6(4):1763-71. https://doi.org/10.20959/wjpr20174-8224
  46. 46. Ahmed S, Rakib A, Islam MA, Khanam BH, Faiz FB, Paul A, et al. In vivo and in vitro pharmacological activities of Tacca integrifolia rhizome and investigation of possible lead compounds against breast cancer through in silico approaches. Clinical Phytoscience International Journal of Phytomedicine and Phytotherapy. 2019;5(1):1-13. https://doi.org/10.1186/s40816-019-0127-x
  47. 47. Rizzo LY, Longato GB, Ruiz ALTG, Tinti SV, Possenti A, Vendramini-Costa DB, et al. In vitro, in vivo and in silico analysis of the anticancer and estrogen-like activity of guava leaf extracts. Current Medicinal Chemistry. 2014;21(20):2322-30. https://doi.org/10.2174/0929867321666140120120031
  48. 48. Kavitha V, Gunavathy N. Molecular docking studies and orbital analysis to identify anti-cancerous potentials to prevent breast cancer. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 2017;2(4):2456-3307.
  49. 49. Yazdiniapour Z, Sadeghi M, Akbari M, Troiano R, Lanzotti V. Cinnamic acid derivatives from welsh onion (Allium fistulosum) and their antibacterial and cytotoxic activities. Phytochemical Analysis. 2021;32(1):84-90. https://doi.org/10.1002/pca.2924
  50. 50. Teotia D, Malik V. Molecular docking and pharmacokinetic studies of bioactive compounds from methanolic leaf extracts of Allium hookeri against alpha amylase & alpha glucosidase. Drug Discovery. 2025;19:e12dd2077. https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.1.282
  51. 51. Majumder R, Parida P, Paul S, Basak P. In vitro and in silico study of Aloe vera leaf extract against human breast cancer. Natural Product Research. 2018;34(16):2363-6. https://doi.org/10.1080/14786419.2018.1534848
  52. 52. Agrawal A, Teotia D, Kumar V, Jain P, Agrawal B, Kumar A, et al. In silico identification of antiviral compounds from genus Asparagus for chikungunya virus using molecular docking and MD simulation. Plant Archives. 2025;25(1):1933-46. https://doi.org/10.51470/PLANTARCHIVES.2025.v25.n
  53. 53. Kashyap P, Muthusamy K, Niranjan M, Trikha S, Kumar S. Sarsasapogenin: A steroidal saponin from Asparagus racemosus as multi target directed ligand in Alzheimer’s disease. Steroids. 2020;153:108529. https://doi.org/10.1016/j.steroids.2019.108529
  54. 54. Riaz S, Haider F, ur-Rehman R, Zafar A. Exploring the therapeutic potential of Asparagus africanus in polycystic ovarian syndrome: a computational analysis. Journal of Integrative Bioinformatics. 2025;21(4):20240019. https://doi.org/10.1515/jib-2024-0019
  55. 55. Li Y, Yang X, Wang F, Zhao J, Zhang C, Wu D, et al. Mechanism of action of Asparagus officinalis extract against multiple myeloma using bioinformatics tools, in silico and in vitro study. Frontiers in Pharmacology. 2023;14:1076815. https://doi.org/10.3389/fphar.2023.1076815
  56. 56. Awati SS, Gilhotra RM, Singh SK, Raj V, Wadkar KA. In vitro antioxidant potential and cytotoxicity study of asparagus aethiopicus l. Extracts on ht-29 human colon cancer cell line. Indian Journal of Pharmaceutical Education and Research. 2020;54:s570-9. https://doi.org/10.5530/ijper.54.3s.156
  57. 57. Fareed YYZ, Babu ND, Abdulammer SE. Phytochemical and anthelminthic activity of Asparagus aethiopicus L. Journal of Bio Innovation. 2021;10(3):851-62. https://doi.org/10.46344/JBINO.2021.v10i03.15
  58. 58. Mokashi AA, Bhatia NM. Exploration of bioactives from natural sources targeting estrogen receptor for breast cancer via in silico approach: network pharmacology, molecular docking, MD simulation and DFT studies. Chemistry Africa. 2025;8(2):187-99. https://doi.org/10.1007/s42250-024-01161-4

Downloads

Download data is not yet available.