Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Allelopathy of invasive Tithonia diversifolia (Hemsl) A. Gray on Pisum sativum L. and its linkage with canopy openness in a global biodiversity hotspot

DOI
https://doi.org/10.14719/pst.8615
Submitted
1 April 2025
Published
05-11-2025 — Updated on 18-11-2025
Versions

Abstract

Allelochemicals are the secondary metabolites present in the leaves or other parts of the invasive alien plants that can either stimulate or inhibit the development of the native plants. To this end, an emerging invasive plant, i.e., Tithonia diversifolia from Asteraceae is inadequately explored in terms of allelopathy, especially in relation to its influence on the germination and growth of edible crops. Thus, the present study aims to study its allelopathic effect on common bioassay crop i.e., Pisum sativum, grown in Mizoram to help validate the ‘novel weapon hypothesis (NWH). In addition, the ecological investigation was performed with respect to the canopy openness, leaf area index (LAI) and photosynthetically active radiation (PAR) as they can be inextricably linked with invasive spread and modulation of allelopathy. Results showed that with increase in the concentration of T. diversifolia derived fresh leaves aqueous extracts (FLE), the growth parameters (rate of seed germination, seed radicle, seed plumule and biomass) of P. sativum decreases, which may be ascribed to the inhibitory effect of allelochemicals. Last, the study also observed that the higher canopy openness facilitates the spread of T. diversifolia due to high light availability, while the lower canopy gaps restrict the growth of T. diversifolia. Henceforth, in control/containment perspective, the sustenance of intact canopy can sustainably manage and reduce the T. diversifolia infestation in agriculture systems by alleviating its field allelopathic effects on edible crops, thereby help maintain crop yield and food security.  

References

  1. 1. Musyimi DM, Okelo LO, Okello VS, Sikuku P. Allelopathic potential of Mexican sunflower (Tithonia diversifolia (Hemsl) A. Gray) on germination and growth of cowpea seedlings (Vigna sinensis L.). Sci Agric. 2015;12(3):149–55. https://doi.org/10.15192/PSCP.SA.2015.12.3.149155
  2. 2. Rai PK, Kim KH. Invasive alien plants and environmental remediation: a new paradigm for sustainable restoration ecology. Restor Ecol. 2020;28(1):3–7. https://doi.org/10.1111/rec.13058
  3. 3. Syngkli R, Vanlalruati, Rai PK. Study on the impact of Mikania micrantha Kunth on soil chemistry, crop yields and forest canopy in an Indo-Burma biodiversity hotspot region. Environ Rep. 2024;6(2):8. http://doi.org/10.51470/ER.2024.6.2.08
  4. 4. Wang S, Wang C, Zhang J, Jiang K, Nian F. Allelopathy and potential allelochemicals of Ligularia sagitta as an invasive plant. Plant Signal Behav. 2024;19(1):2335025. https://doi.org/10.1080/15592324.2024.2335025
  5. 5. Sakachep ZK, Rai PK. Effects of invasive alien plants on floristic diversity and soil physico-chemical characteristics in Hailakandi district, Assam, an Indo-Burma hotspot region. Trop Ecol. 2025;8:1–8.
  6. 6. Thiébaut G, Tarayre M, Rodríguez-Pérez H. Allelopathic effects of native versus invasive plants on one major invader. Front Plant Sci. 2019;10:854. https://doi.org/10.3389/fpls.2019.00854
  7. 7. Iman A, Wahab Z, Rastan SOS, Halim MRA. Allelopathic effect of sweet corn and vegetable soybean extracts at two growth stages on germination and seedling growth of corn and soybean varieties. J Agron. 2006;5(1):62–8. https://doi.org/10.3923/ja.2006.62.68
  8. 8. Gupta A, Mittal C. Effect of allelopathic leaf extract of some selected weed flora of Ajmer district on seed germination of Triticum aestivum L. Sci Res Rep. 2012;2(3):311–15. http://www.jsrr.in/Vol.2%20No.3/29%20Gupta%20129-133.pdf
  9. 9. Asaduzzaman M, Islam MM, Sultana S. Allelopathy and allelochemicals in rice weed management. Bangladesh Res Publ J. 2010;4(1):1–14. http://www.bdresearchpublications.com/admin/journal/upload/09146/09146.pdf
  10. 10. Rai PK, Singh JS. Invasive alien plant species: their impact on environment, ecosystem services and human health. Ecol Indic. 2020;111:106020. https://doi.org/10.1016/j.ecolind.2019.106020
  11. 11. Syngkli RB, Lalremruati B, Rai PK. Effects of three invasive alien plant species on soil attributes at different disturbance gradients in Aizawl, Mizoram, North East India. Vegetos. 2025;1–3.
  12. 12. Chandra J, Mali MC. Allelopathic effect of Acacia tortilis on germination and seedling growth of Prosopis chilensis. Life Sci Leafl. 2012;24:53–7. http://lifesciencesleaflets.ning.com/
  13. 13. Rai PK, Singh JS. Ecological mechanisms and weed biology of world’s worst invasive alien plant Mikania micrantha: policy measures for sustainable management. Weed Biol Manag. 2025;25:e70004. https://doi.org/10.1111/wbm.70004
  14. 14. Rai PK, Lee SS, Bhardwaj N, Kim KH. The environmental, socio-economic and health effects of invasive alien plants: review on Tithonia diversifolia (Hemsl.) A. Gray in Asteraceae. S Afr J Bot. 2023;162:461–80. https://doi.org/10.1016/j.sajb.2023.09.038
  15. 15. Muoghalu JI, Chuba DK. Seed germination and reproductive strategies of Tithonia diversifolia (Hemsl.) Gray and Tithonia rotundifolia (PM) Blake. Appl Ecol Environ Res. 2005;3(1):39–46. http://doi.org/10.15666/aeer/0301_039046
  16. 16. Zachariades C, Day M, Muniappan R, Reddy GVP. Chromolaena odorata (L.) King and Robinson (Asteraceae). In: Muniappan R, Reddy GVP, Raman A, editors. Biological control of tropical weeds using arthropods. Cambridge: Cambridge University Press; 2009. p.130–62.
  17. 17. Otusanya OO, Ogunwole AA, Tijani MO. Allelopathic effect of and on the germination, growth and chlorophyll accumulation of Hibiscus sabdariffa L. Int J Bot. 2015;5(3):1–14.
  18. 18. Akobundu IO, Agyakwa CW. A handbook of West African weeds. Ibadan: IITA; 1987.
  19. 19. Taiwo LB, Makinde JO. Influence of water extract of Mexican sunflower (Tithonia diversifolia) on growth of cowpea (Vigna unguiculata). Afr J Biotechnol. 2005;4(4):355–60.
  20. 20. Ayeni AO, Lordbanjou DT, Majek BA. Tithonia diversifolia (Mexican sunflower) in south-western Nigeria: occurrence and growth habit. Weed Res. 2008;37(6). https://doi.org/10.1046/j.1365-3180.1997.d01-72.x
  21. 21. Rai PK, Vanlalruati. Societal perception on environmental and socio-economic implications of Tithonia diversifolia (Hemsl.) A. Gray invasion in an Indo-Burma biodiversity hotspot. Environ Socio-Econ Stud. 2022;10(3):59–66. https://doi.org/10.2478/environ-2022-0017
  22. 22. Otusanya OO, Ikonoh OW, Ilori OJ. Allelopathic potentials of Tithonia diversifolia: effect on the germination, growth and chlorophyll accumulation of Capsicum annuum L. and Lycopersicon esculentum Mill. Int J Bot. 2008;4(4):471–5. https://doi.org/10.3923/ijb.2008.471.475
  23. 23. Zivanayi M, Ronald M, Nyamande M. Allelopathy as a tool for invasiveness of Tithonia diversifolia extracts through in vitro suppression of crop seeds’ germination. Afr J Plant Sci. 2024;18(4):28–40. https://doi.org/10.5897/AJPS2024.2370
  24. 24. Nkongolo CK, Muyayabantu GM, Kayombo M. Effect of Tithonia diversifolia (Hemsley) and inorganic fertilizers on morpho-agronomic characteristics of rice (Oryza sativa L.) grown on oxisols in Democratic Republic of Congo. Am J Plant Sci. 2025;16(1):64–75. https://doi.org/10.4236/ajps.2025.161008
  25. 25. Hafifah H, Sudiarso S, Maghfoer MD, Prasetya B. The potential of Tithonia diversifolia green manure for improving soil quality for cauliflower (Brassica oleracea var. brotrytis L.). J Degrad Min Lands Manag. 2016;3(2):499. https://doi.org/10.15243/jdmlm.2016.032.499
  26. 26. Jama B, Palm CA, Buresh RJ, Niang AL, Gachengo C, Nziguheba G, et al. Tithonia diversifolia as a green manure for soil fertility improvement in western Kenya: a review. Agrofor Syst. 2000;49(2):201–21. https://doi.org/10.1023/A:1006339025728
  27. 27. Kim D, An S, Kim L, Byeon YM, Lee J, Choi MJ, et al. Translocation and chronic effects of microplastics on pea plants (Pisum sativum) in copper-contaminated soil. J Hazard Mater. 2022;436:29194. https://doi.org/10.1016/j.jhazmat.2022.129194
  28. 28. Mobley ML, Kruse AS, McNickle GG. Pisum sativum has no competitive responses to neighbors: a case study in (non) reproducible plant biology. Plant Direct. 2022;6(10). https://doi.org/10.1002/pld3.411
  29. 29. Frías J, Giacomino S, Peñas E, Pellegrino N, Ferreyra V, Apro N, et al. Assessment of the nutritional quality of raw and extruded Pisum sativum L. var. laguna seeds. LWT Food Sci Technol. 2011;44(5):1303–8. https://doi.org/10.1016/j.lwt.2010.12.025
  30. 30. Dahl WJ, Foster LM, Tyler RT. Review of the health benefits of peas (Pisum sativum L.). Br J Nutr. 2012;108(S1):S3–10. https://doi.org/10.1017/S0007114512000852
  31. 31. Syngkli RB, Lalremruati B, Rai PK. Effects of three invasive alien plant species on soil attributes at different disturbance gradients in Aizawl, Mizoram, North East India. Vegetos. 2025;1–3.
  32. 32. Sengupta R, Dash SS. A comprehensive inventory and ecological assessment of alien plant invasion in Mizoram. Indones J For Res. 2020;7(2):135–54. http://doi.org/10.20886/ijfr.2020.7.2.135-154
  33. 33. Rai PK, Singh JS. Ecological insights and environmental threats of invasive alien plant Chromolaena odorata: prospects for sustainable management. Weed Biol Manag. 2024;24(1):15–37. https://doi.org/10.1111/wbm.12286
  34. 34. Callaway RM, Ridenour WM. Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ. 2004;2(8):436–43. https://doi.org/10.1890/1540-9295(2004)002[0436:NWISAT]2.0.CO;2
  35. 35. District Census Handbook - Aizawl. Census of India 2011. Series-16 Part XII-B.
  36. 36. Vanlalruati, Rai PK. The impact of Tithonia diversifolia (Hemsl.) A. Gray on phytosociology and native plants diversity of Aizawl, Mizoram, North East India. Ecol Environ Conserv. 2021;27:S211–6.
  37. 37. Sakachep ZK, Rai PK. Impact assessment of invasive alien plants on soil organic carbon status in disturbed and moderately disturbed patches of Hailakandi District in an Indo-Burma hotspot region. Indian J Ecol. 2021;48(6):1698–704.
  38. 38. Forest Survey of India. State of Forest Report. Ministry of Environment Forest and Climate Change, Dehradun. 2023.
  39. 39. Rai PK. Assessment of multifaceted environmental issues and model development of an Indo-Burma hotspot region. Environ Monit Assess. 2012;184:113–31. https://doi.org/10.1007/s10661-011-1951-8
  40. 40. Tordoff AW, Baltzer MC, Fellowes JR, Pilgrim JD, Langhammer PF. Key biodiversity areas in the Indo-Burma hotspot: process, progress and future directions. J Threat Taxa. 2012;2779–87. https://doi.org/10.11609/jott.2785.8.7.8953-8969
  41. 41. Sengupta R, Dash SS. Impacts and status of invasion by Lantana camara in natural forests of an Indo-Burma biodiversity hotspot region: a case study in Mizoram, India. RE. 2024;6(3). http://doi.org/10.30564/re.v6i3.6343
  42. 42. Syngkli RB, Rai PK. Allelopathic effects of Ageratum conyzoides L. on the germination and growth of Zea mays L., Lactuca sativa L. and Solanum lycopersicum L. Allelopath J. 2024;62(2):193–204. https://doi.org/10.26651/allelo.j/2024-62-2-1494
  43. 43. Ismail BS, Chong TV. Effects of aqueous extracts and decomposition of Mikania micrantha HBK debris on selected agronomic crops. Weed Biol Manag. 2002;2(1):31–8. https://doi.org/10.1046/j.1445-6664.2002.00045.x
  44. 44. Sooraj NP, Jaishanker R, Sajeev CR, Kumar VS, Lijimol D, Ammini J. Influence of forest canopy gaps on establishment of Mikania micrantha Kunth, an invasive plant, in a tropical forest in southern Western Ghats, India. Appl Ecol Environ Sci. 2020;8(5):199–206. https://doi.org/10.12691/aees-8-5-3
  45. 45. Abu SR, Shatnawi M, Shibli R. Allelopathic effects of spurge (Euphorbia hierosolyminata) on wheat (Triticum durum). Am Eurasian J Agric Environ Sci. 2010;7(3):298–302.
  46. 46. Yi X, Wang M, Xue C, Ju M. Radicle pruning by seed-eating animals helps oak seedlings absorb more soil nutrients. Integr Zool. 2021;16:637–45. https://doi.org/10.1111/1749-4877.12489
  47. 47. Zhang C, Fu S. Allelopathic effects of eucalyptus and the establishment of mixed stands of eucalyptus and native species. For Ecol Manag. 2009;258(7):1391–6. https://doi.org/10.1016/j.foreco.2009.06.045
  48. 48. Fangue GY, Mouafo RT, Fomekong MK, Effa PO, Djocgoue P. Allelopathic effect of three wild plants (Azadirachta indica, Tithonia diversifolia and Thevetia peruviana) on tomato (Lycopersicum esculentum Mill.) growth and stimulation of metabolites involved in plant resistance. Am J Plant Sci. 2021;12(3):285–99. https://doi.org/10.4236/ajps.2021.123018
  49. 49. Muñoz Mazón M, Klanderud K, Sheil D. Canopy openness modifies tree seedling distributions along a tropical forest elevation gradient. Oikos. 2022;(11):e09205. https://doi.org/10.1111/oik.09205
  50. 50. Fang H, Baret F, Plummer S, Schaepman-Strub G. An overview of global leaf area index (LAI): methods, products, validation and applications. Rev Geophys. 2019;57(3):739–99.

Downloads

Download data is not yet available.