Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Remote sensing and machine learning based approaches in mapping coastal ecosystem and quantifying carbon stock

DOI
https://doi.org/10.14719/pst.8617
Submitted
1 April 2025
Published
01-07-2025 — Updated on 14-07-2025
Versions

Abstract

Blue carbon (BC) ecosystems involve mangroves, sea grasses and saltmarshes which are all influential coastal resources providing diverse environmental goods and services. These ecosystems play a pivotal role in the mitigating climate change impacts and global carbon cycle. On a large scale, it is challenging to monitor these ecosystems, which include time-consuming field measurements, but a remote sensing tool makes this monitoring more efficient by offering faster and broader coverage. This review focuses on how remote sensing utilized for mapping and monitoring BC ecosystems. Particularly multispectral and hyperspectral data, proves to be the most common method for mapping, Landsat time-series data are widely utilized for monitoring changes on larger scales. Despite the effectiveness of remote sensing, also challenges that persisted, including cloud coverage, spectral limitations and errors in microwave SAR data. Recent advances in multispectral imagery, SAR imagery, LiDAR data and pilotless aircraft, coupled with image analysis techniques, enhance the ability to quantify BC stocks at larger scales. However, challenges such as removal of atmospheric effect, water related issues and limitations in training samples hinder accurate estimation. This article gives an overview of use of remote sensing data to monitor BC ecosystem and quantify carbon stocks in those ecosystems. Despite challenges, the integration of multi satellite data fusion with machine learning techniques holds promise for advancing the accurate quantification of BC stocks.

References

  1. 1. Mcleod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, et al. A blueprint for BC: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO₂. Frontiers in Ecology and the Environment. 2011;9(10):552-60. https://doi.org/10.1890/110004
  2. 2. Harmel T, Chami M, Tormos T, Reynaud N, Danis P-A. Sunglint correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 imagery over inland and sea waters from SWIR bands. Remote Sensing of Environment. 2018;204:308-21. https://doi.org/10.1016/j.rse.2017.10.022
  3. 3. Duarte CM, Middelburg JJ, Caraco N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences. 2005;2(1):1-8. https://doi.org/10.5194/bg-2-1-2005
  4. 4. Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA, Sifleet S, et al. Estimating global “BC” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One. 2012;7(9):e43542. https://doi.org/10.1371/journal.pone.0043542
  5. 5. Maurya P, Das AK, Kumari R. Managing the BC ecosystem: A remote sensing and GIS approach. In: Advances in remote sensing for natural resource monitoring. 2021:247-68. https://doi.org/10.1002/9781119616016.ch13
  6. 6. Newton A, Icely J, Cristina S, Perillo GM, Turner RE, Ashan D, et al. Anthropogenic, direct pressures on coastal wetlands. Frontiers in Ecology and Evolution. 2020;8:144. https://doi.org/10.3389/fevo.2020.00144
  7. 7. Li F, Yigitcanlar T, Nepal M, Nguyen K, Dur F. Machine learning and remote sensing integration for leveraging urban sustainability: A review and framework. Sustainable Cities and Society. 2023;96:104653. https://doi.org/10.1016/j.scs.2023.104653
  8. 8. Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography. 2011;20(1):154-9. https://doi.org/10.1111/j.1466-8238.2010.00584.x
  9. 9. Spalding M, Kainuma M, Collins L. World atlas of mangroves. Routledge; 2010. https://doi.org/10.4324/9781849776608
  10. 10. Alongi DM. BC: Coastal sequestration for climate change mitigation. Springer; 2018.
  11. 11. Spalding M. World atlas of mangroves. Routledge; 2010. https://doi.org/10.4324/9781849776608
  12. 12. Duarte CM, Marbà N, Gacia E, Fourqurean JW, Beggins J, Barrón C, et al. Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Global Biogeochemical Cycles. 2010;24(4). https://doi.org/10.1029/2010GB003793
  13. 13. Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience. 2011;4(5):293-7. https://doi.org/10.1038/ngeo1123
  14. 14. Bouillon S, Moens T, Overmeer I, Koedam N, Dehairs F. Resource utilization patterns of epifauna from mangrove forests with contrasting inputs of local versus imported organic matter. Marine Ecology Progress Series. 2004;278:77-88. https://doi.org/10.3354/meps278077
  15. 15. Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR. The value of estuarine and coastal ecosystem services. Ecological Monographs. 2011;81(2):169-93. https://doi.org/10.1890/10-1510.1
  16. 16. Short FT, Polidoro B, Livingstone SR, Carpenter KE, Bandeira S, Bujang JS, et al. Extinction risk assessment of the world’s seagrass species. Biological Conservation. 2011;144(7):1961-71. https://doi.org/10.1016/j.biocon.2011.04.010
  17. 17. Macreadie P, Baird M, Trevathan-Tackett S, Larkum A, Ralph P. Quantifying and modelling the carbon sequestration capacity of seagrass meadows–a critical assessment. Marine Pollution Bulletin. 2014;83(2):430-9. https://doi.org/10.1016/j.marpolbul.2013.07.038
  18. 18. Unsworth RK, De León PS, Garrard SL, Jompa J, Smith DJ, Bell JJ. High connectivity of Indo-Pacific seagrass fish assemblages with mangrove and coral reef habitats. Marine Ecology Progress Series. 2008;353:213-24. https://doi.org/10.3354/meps07199
  19. 19. Waycott M, Duarte CM, Carruthers TJ, Orth RJ, Dennison WC, Olyarnik S, et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci U S A. 2009;106(30):12377-81. https://doi.org/10.1073/pnas.0905620106
  20. 20. Mitra A, Zaman S. BC reservoir of the blue planet. Springer, New Delhi; 2015. https://doi.org/10.1007/978-81-322-2107-4
  21. 21. Beer S, Björk M, Beardall J. Photosynthesis in the marine environment. John Wiley & Sons; 2014.
  22. 22. Manzello DP, Enochs IC, Melo N, Gledhill DK, Johns EM. Ocean acidification refugia of the Florida reef tract. PLoS One. 2012;7(12):e41715. https://doi.org/10.1371/journal.pone.0041715
  23. 23. Siikamäki J, Sanchirico JN, Jardine S, McLaughlin D, Morris D. BC: coastal ecosystems, their carbon storage and potential for reducing emissions. Environment: Science and Policy for Sustainable Development. 2013;55(6):14-29. https://doi.org/10.1080/00139157.2013.843981
  24. 24. Grigore MN, Toma C, Boscaiu M. Dealing with halophytes: an old problem, the same continuous exciting challenge. Analele Stiintifice ale Universitatii "Alexandru Ioan Cuza" din Iasi Biologie Vegetala. 2010;56(1):21-32.
  25. 25. Loconsole D, Cristiano G, De Lucia B. Glassworts: from wild salt marsh species to sustainable edible crops. Agriculture. 2019;9(1):14. https://doi.org/10.3390/agriculture9010014
  26. 26. Townend I, Fletcher C, Knappen M, Rossington K. A review of salt marsh dynamics. Water and Environment Journal. 2011;25(4):477-88. https://doi.org/10.1111/j.1747-6593.2010.00243.x
  27. 27. Arias Ortiz A. Carbon sequestration rates in coastal BC ecosystems: A perspective on climate change mitigation. 2019.
  28. 28. Kelleway JJ, Saintilan N, Macreadie PI, Skilbeck CG, Zawadzki A, Ralph PJ. Seventy years of continuous encroachment substantially increases ‘BC’ capacity as mangroves replace intertidal salt marshes. Global Change Biology. 2016;22(3):1097-109. https://doi.org/10.1111/gcb.13158
  29. 29. Miyajima T, Hori M, Hamaguchi M, Shimabukuro H, Adachi H, Yamano H, et al. Geographic variability in organic carbon stock and accumulation rate in sediments of East and Southeast Asian seagrass meadows. Global Biogeochemical Cycles. 2015;29(4):397-415. https://doi.org/10.1002/2014GB004979
  30. 30. Krause-Jensen D, Duarte CM. Substantial role of macroalgae in marine carbon sequestration. Nature Geoscience. 2016;9(10):737-42. https://doi.org/10.1038/ngeo2790
  31. 31. Reef R, Feller IC, Lovelock CE. Nutrition of mangroves. Tree Physiology. 2010;30(9):1148-60. https://doi.org/10.1093/treephys/tpq048
  32. 32. Wigand C, Davey E, Johnson R, Sundberg K, Morris J, Kenny P, et al. Nutrient effects on belowground organic matter in a minerogenic salt marsh, North Inlet, SC. Estuaries and Coasts. 2015;38:1838-53. https://doi.org/10.1007/s12237-014-9937-8
  33. 33. Saintilan N, Rogers K, Mazumder D, Woodroffe C. Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estuarine, Coastal and Shelf Science. 2013;128:84-92. https://doi.org/10.1016/j.ecss.2013.05.010
  34. 34. Kennedy H, Beggins J, Duarte CM, Fourqurean JW, Holmer M, Marbà N, et al. Seagrass sediments as a global carbon sink: Isotopic constraints. Global Biogeochemical Cycles. 2010;24(4). https://doi.org/10.1029/2010GB003848
  35. 35. Sappal SM, Ranjan P, Ramanathan A. BC ecosystems and their role in climate change mitigation-an overview. Journal of Climate Change. 2016;2(2):1-13. https://doi.org/10.3233/JCC-160013
  36. 36. Jennerjahn TC, Ittekkot V. Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften. 2002;89:23-30. https://doi.org/10.1007/s00114-001-0283-x
  37. 37. Mudd SM, D'Alpaos A, Morris JT. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. Journal of Geophysical Research: Earth Surface. 2010;115(F3). https://doi.org/10.1029/2009JF001566
  38. 38. Filho PS, Cohen M, Lara R, Lessa G, Koch B, Behling H. Holocene coastal evolution and facies model of the Bragança macrotidal flat on the Amazon mangrove coast, Northern Brazil. Journal of Coastal Research. 2006;22(2):306-10.
  39. 39. Hossain MS, Bujang JS, Zakaria MH, Hashim M. The application of remote sensing to seagrass ecosystems: an overview and future research prospects. International Journal of Remote Sensing. 2015;36(1):61-4. https://doi.org/10.1080/01431161.2014.990649
  40. 40. Pham TD, Yokoya N, Bui DT, Yoshino K, Friess DA. Remote sensing approaches for monitoring mangrove species, structure and biomass: Opportunities and challenges. Remote Sensing. 2019;11(3):230. https://doi.org/10.3390/rs11030230
  41. 41. Pettorelli N, Schulte to Bühne H, Tulloch A, Dubois G, Macinnis-Ng C, Queirós AM, et al. Satellite remote sensing of ecosystem functions: opportunities, challenges and way forward. Remote Sensing in Ecology and Conservation. 2018;4(2):71-93. https://doi.org/10.1002/rse2.59
  42. 42. Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, et al. Recent advances in convolutional neural networks. Pattern Recognition. 2018;77:354-77. https://doi.org/10.1016/j.patcog.2017.10.013
  43. 43. Abu Bakar NA, Wan Mohd Jaafar WS, Abdul Maulud KN, Muhmad Kamarulzaman AM, Saad SNM, Mohan M. Monitoring mangrove-based BC ecosystems using UAVs: a review. Geocarto International. 2024;39(1):2405123. https://doi.org/10.1080/10106049.2024.2405123
  44. 44. Wulder MA, Loveland TR, Roy DP, Crawford CJ, Masek JG, Woodcock CE, et al. Current status of Landsat program, science and applications. Remote Sensing of Environment. 2019;225:127-47. https://doi.org/10.1016/j.rse.2019.02.015
  45. 45. Ngo P-TT, Pham TD, Nhu V-H, Le TT, Tran DA, Phan DC, et al. A novel hybrid quantum-PSO and credal decision tree ensemble for tropical cyclone induced flash flood susceptibility mapping with geospatial data. Journal of Hydrology. 2021;596:125682. https://doi.org/10.1016/j.jhydrol.2020.125682
  46. 46. Truong VT, Hoang TT, Cao DP, Hayashi M, Tadono T, Nasahara KN. JAXA annual forest cover maps for Vietnam during 2015–2018 using ALOS-2/PALSAR-2 and auxiliary data. Remote Sensing. 2019;11(20):2412. https://doi.org/10.3390/rs11202412
  47. 47. Duong PC, Trung TH, Nasahara KN, Tadono T. JAXA high-resolution land use/land cover map for Central Vietnam in 2007 and 2017. Remote Sensing. 2018;10(9):1406. https://doi.org/10.3390/rs10091406
  48. 48. Ha N-T, Manley-Harris M, Pham T-D, Hawes I. Detecting multi-decadal changes in seagrass cover in Tauranga Harbour, New Zealand, using Landsat imagery and boosting ensemble classification techniques. ISPRS International Journal of Geo-Information. 2021;10(6):371. https://doi.org/10.3390/ijgi10060371
  49. 49. Warwick-Champion E, Davies KP, Barber P, Hardy N, Bruce E. Characterising the aboveground carbon content of saltmarsh in Jervis Bay, NSW, using ArborCam and Planetscope. Remote Sensing. 2022;14(8):1782. https://doi.org/10.3390/rs14081782
  50. 50. Ladd CJ, Smeaton C, Skov MW, Austin WE. Best practice for upscaling soil organic carbon stocks in salt marshes. Geoderma. 2022;428:116188. https://doi.org/10.1016/j.geoderma.2022.116188
  51. 51. Ha N-T, Pham T-D, Pham H-T, Tran D-A, Hawes I. Total organic carbon estimation in seagrass beds in Tauranga Harbour, New Zealand using multi-sensors imagery and grey wolf optimization. Geocarto International. 2023;38(1):2160832. https://doi.org/10.1080/10106049.2022.2160832
  52. 52. Rijal SS, Pham TD, Noer’Aulia S, Putera MI, Saintilan N. Mapping mangrove above-ground carbon using multi-source remote sensing data and machine learning approach in Loh Buaya, Komodo National Park, Indonesia. Forests. 2023;14(1):94. https://doi.org/10.3390/f14010094
  53. 53. Csillik O, Kumar P, Mascaro J, O’Shea T, Asner GP. Monitoring tropical forest carbon stocks and emissions using Planet satellite data. Scientific Reports. 2019;9(1):17831. https://doi.org/10.1038/s41598-019-54386-6
  54. 54. Pham TD, Yoshino K, Bui DT. Biomass estimation of Sonneratia caseolaris (L.) Engler at a coastal area of Hai Phong city (Vietnam) using ALOS-2 PALSAR imagery and GIS-based multi-layer perceptron neural networks. GIScience & Remote Sensing. 2017;54(3):329-53. https:/doi.org/10.1080/15481603.2016.1269869
  55. 55. Kulawardhana RW, Popescu SC, Feagin RA. Fusion of lidar and multispectral data to quantify salt marsh carbon stocks. Remote Sensing of Environment. 2014;154:345-57. https://doi.org/10.3390/rs12162659
  56. 56. Lu B, Dao PD, Liu J, He Y, Shang J. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sensing. 2020;12(16):2659. https://doi.org/10.3390/rs12162659
  57. 57. Anand A, Pandey PC, Petropoulos GP, Pavlides A, Srivastava PK, Sharma JK, et al. Use of Hyperion for mangrove forest carbon stock assessment in Bhitarkanika Forest Reserve: a contribution towards BC initiative. Remote Sensing. 2020;12(4):597. https://doi.org/10.3390/rs12040597
  58. 58. Transon J, d’Andrimont R, Maugnard A, Defourny P. Survey of hyperspectral Earth observation applications from space in the Sentinel-2 context. Remote Sensing. 2018;10(2):157. https://doi.org/10.3390/rs10020157
  59. 59. Bamler R. Principles of synthetic aperture radar. Surveys in Geophysics. 2000;21(2):147-57. https://doi.org/10.1023/A:1006790026612
  60. 60. Kumar D. Urban objects detection from C-band synthetic aperture radar (SAR) satellite images through simulating filter properties. Scientific Reports. 2021;11(1):6241. https://doi.org/10.1038/s41598-021-85121-9
  61. 61. Phan DC, Trung TH, Truong VT, Nasahara KN. Ensemble learning updating classifier for accurate land cover assessment in tropical cloudy areas. Geocarto International. 2022;37(14):4053-70. https://doi.org/10.1080/10106049.2021.1878292
  62. 62. Kellndorfer J, Flores-Anderson A, Herndon K, Thapa R. Using SAR data for mapping deforestation and forest degradation. In: The SAR Handbook Comprehensive Methodologies for Forest Monitoring and Biomass Estimation. ServirGlobal, Hunstville, AL, USA; 2019:65-79.
  63. 63. Julitta T. Optical proximal sensing for vegetation monitoring. 2015.
  64. 64. Englhart S, Keuck V, Siegert F. Aboveground biomass retrieval in tropical forests-The potential of combined X- and L-band SAR data use. Remote Sensing of Environment. 2011;115(5):1260-71. https://doi.org/10.1016/j.rse.2011.01.008
  65. 65. Darmawan S, Sari DK, Takeuchi W, Wikantika K, Hernawati R. Development of aboveground mangrove forests’ biomass dataset for Southeast Asia based on ALOS-PALSAR 25-m mosaic. Journal of Applied Remote Sensing. 2019;13(4):044519. https://doi.org/10.1117/1.JRS.13.044519
  66. 66. Thomas N, Lucas R, Itoh T, Simard M, Fatoyinbo L, Bunting P, et al. An approach to monitoring mangrove extents through time-series comparison of JERS-1 SAR and ALOS PALSAR data. Wetlands Ecology and Management. 2015;23:3-17. https://doi.org/10.1007/s11273-014-9370-6
  67. 67. Moniruzzaman M, Islam S, Lavery P, Bennamoun M, Lam CP. Imaging and classification techniques for seagrass mapping and monitoring: a comprehensive survey. arXiv preprint arXiv:1902.11114. 2019.
  68. 68. Veettil BK, Ward RD, Lima MDAC, Stankovic M, Hoai PN, Quang NX. Opportunities for seagrass research derived from remote sensing: a review of current methods. Ecological Indicators. 2020;117:106560. https://doi.org/10.1016/j.ecolind.2020.106560
  69. 69. Rowan GS, Kalacska M. A review of remote sensing of submerged aquatic vegetation for non-specialists. Remote Sensing. 2021;13(4):623. https://doi.org/10.3390/rs13040623
  70. 70. Tian S, Zheng G, Eitel JU, Zhang Q. A lidar-based 3-D photosynthetically active radiation model reveals the spatiotemporal variations of forest sunlit and shaded leaves. Remote Sensing. 2021;13(5):1002. https://doi.org/10.3390/rs13051002
  71. 71. Potapov P, Li X, Hernandez-Serna A, Tyukavina A, Hansen MC, Kommareddy A, et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sensing of Environment. 2021;253:112165. https://doi.org/10.1016/j.rse.2020.112165
  72. 72. Wannasiri W, Nagai M, Honda K, Santitamnont P, Miphokasap P. Extraction of mangrove biophysical parameters using airborne LiDAR. Remote Sensing. 2013;5(4):1787-808. https://doi.org/10.3390/rs5041787
  73. 73. Tang Y-N, Ma J, Xu J-X, Wu W-B, Wang Y-C, Guo H-Q. Assessing the impacts of tidal creeks on the spatial patterns of coastal salt marsh vegetation and its aboveground biomass. Remote Sensing. 2022;14(8):1839. https://doi.org/10.3390/rs14081839
  74. 74. Simard M, Fatoyinbo L, Smetanka C, Rivera-Monroy VH, Castañeda-Moya E, Thomas N, et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience. 2019;12(1):40-5. https://doi.org/10.1038/s41561-018-0279-1
  75. 75. Stovall AE, Fatoyinbo T, Thomas NM, Armston J, Ebanega MO, Simard M, et al. Comprehensive comparison of airborne and spaceborne SAR and LiDAR estimates of forest structure in the tallest mangrove forest on earth. Science of Remote Sensing. 2021;4:100034. https://doi.org/10.1016/j.srs.2021.100034
  76. 76. Hudak AT, Strand EK, Vierling LA, Byrne JC, Eitel JU, Martinuzzi S, et al. Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys. Remote Sensing of Environment. 2012;123:25-40. https://doi.org/10.1016/j.rse.2012.02.023
  77. 77. Feng L, Chen S, Zhang C, Zhang Y, He Y. A comprehensive review on recent applications of unmanned aerial vehicle remote sensing with various sensors for high-throughput plant phenotyping. Computers and Electronics in Agriculture. 2021;182:106033. https://doi.org/10.1016/j.compag.2021.106033
  78. 78. Shahbazi M, Théau J, Ménard P. Recent applications of unmanned aerial imagery in natural resource management. GIScience & Remote Sensing. 2014;51(4):339-65. https://doi.org/10.1080/15481603.2014.926650
  79. 79. Pajares G. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogrammetric Engineering & Remote Sensing. 2015;81(4):281-330. https://doi.org/10.14358/PERS.81.4.281
  80. 80. Chen J, Sasaki J. Mapping of subtidal and intertidal seagrass meadows via application of the feature pyramid network to unmanned aerial vehicle orthophotos. Remote Sensing. 2021;13(23):4880. https://doi.org/10.3390/rs13234880
  81. 81. Fernandes MR, Aguiar FC, Martins MJ, Rico N, Ferreira MT, Correia AC. Carbon stock estimations in a mediterranean riparian forest: A case study combining field data and UAV imagery. Forests. 2020;11(4):376. https://doi.org/10.3390/f11040376
  82. 82. Jones AR, Raja Segaran R, Clarke KD, Waycott M, Goh WS, Gillanders BM. Estimating mangrove tree biomass and carbon content: a comparison of forest inventory techniques and drone imagery. Frontiers in Marine Science. 2020;6:784. https://doi.org/10.3389/fmars.2019.00784
  83. 83. Otero V, Van De Kerchove R, Satyanarayana B, Martínez-Espinosa C, Fisol MAB, Ibrahim MRB, et al. Managing mangrove forests from the sky: Forest inventory using field data and Unmanned Aerial Vehicle (UAV) imagery in the Matang Mangrove Forest Reserve, peninsular Malaysia. Forest Ecology and Management. 2018;411:35-45. https://doi.org/10.1016/j.foreco.2017.12.049
  84. 84. Brovkina O, Novotny J, Cienciala E, Zemek F, Russ R. Mapping forest aboveground biomass using airborne hyperspectral and LiDAR data in the mountainous conditions of Central Europe. Ecological Engineering. 2017;100:219-30. https://doi.org/10.1016/j.ecoleng.2016.12.004
  85. 85. Nayak AK, Rahman MM, Naidu R, Dhal B, Swain CK, Nayak AD, et al. Current and emerging methodologies for estimating carbon sequestration in agricultural soils: A review. Science of the total environment. 2019;665:890-912. https://doi.org/10.1016/j.scitotenv.2019.02.125
  86. 86. Richards DR, Thompson BS, Wijedasa L. Quantifying net loss of global mangrove carbon stocks from 20 years of land cover change. Nature communications. 2020;11(1):4260. https://doi.org/10.1038/s41467-020-18118-z
  87. 87. Tang W, Feng W, Jia M, Shi J, Zuo H, Trettin CC. The assessment of mangrove biomass and carbon in West Africa: a spatially explicit analytical framework. Wetlands Ecology and Management. 2016;24:153-71. https://doi.org/10.1007/s11273-015-9474-7
  88. 88. Hickey S, Callow N, Phinn S, Lovelock C, Duarte CM. Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: A remote sensing height-biomass-carbon approach. Estuarine, Coastal and Shelf Science. 2018;200:194-201. https://doi.org/10.1016/j.ecss.2017.11.004
  89. 89. Bindu G, Rajan P, Jishnu E, Joseph KA. Carbon stock assessment of mangroves using remote sensing and geographic information system. The Egyptian Journal of Remote Sensing and Space Science. 2020;23(1):1-9. https://doi.org/10.1016/j.ejrs.2018.04.006
  90. 90. Dierssen HM, Zimmerman RC, Drake LA, Burdige D. Benthic ecology from space: optics and net primary production in seagrass and benthic algae across the Great Bahama Bank. Marine Ecology Progress Series. 2010;411:1-15. https://doi.org/10.3354/meps08665
  91. 91. Hill VJ, Zimmerman RC, Bissett WP, Dierssen H, Kohler DD. Evaluating light availability, seagrass biomass and productivity using hyperspectral airborne remote sensing in Saint Joseph’s Bay, Florida. Estuaries and coasts. 2014;37:1467-89. https://doi.org/10.1007/s12237-013-9764-3
  92. 92. Wicaksono P. Mangrove above-ground carbon stock mapping of multi-resolution passive remote-sensing systems. International Journal of Remote Sensing. 2017;38(6):1551-78.
  93. 93. Ramasubu R, Palanivelraja S. Assessment of Carbon Stock in Pichavaram Mangrove Forest Using Remote Sensing And GIS. Turkish Online Journal of Qualitative Inquiry. 2021;12(10).
  94. 94. Suyadi, Gao J, Lundquist CJ, Schwendenmann L. Aboveground carbon stocks in rapidly expanding mangroves in New Zealand: regional assessment and economic valuation of BC. Estuaries and Coasts. 2020;43:1456-69. https://doi.org/10.1007/s12237-020-00736-x
  95. 95. Lary DJ, Alavi AH, Gandomi AH, Walker AL. Machine learning in geosciences and remote sensing. Geoscience Frontiers. 2016;7(1):3-10. https://doi.org/10.1016/j.gsf.2015.07.003
  96. 96. Patil V, Singh A, Naik N, Unnikrishnan S. Estimation of mangrove carbon stocks by applying remote sensing and GIS techniques. Wetlands. 2015;35:695-707. https://doi.org/10.1007/s13157-015-0660-4
  97. 97. Pham TD, Yoshino K. Aboveground biomass estimation of mangrove species using ALOS-2 PALSAR imagery in Hai Phong City, Vietnam. Journal of Applied Remote Sensing. 2017;11(2):026010-. https://doi.org/10.1117/1.JRS.11.026010
  98. 98. Li Y, Sun Y, Jiang Y, Pan L. Effects of salt stress on seed germination of Saponaria officinalis. Journal of Northeast Forestry University. 2019;47(9):17-27.
  99. 99. Ghosh S, Behera M, Jagadish B, Das A, Mishra D. A novel approach for estimation of aboveground biomass of a carbon-rich mangrove site in India. Journal of Environmental Management. 2021;292:112816. https://doi.org/10.1016/j.jenvman.2021.112816
  100. 100. Lagomasino D, Fatoyinbo T, Lee S, Feliciano E, Trettin C, Shapiro A, et al. Measuring mangrove carbon loss and gain in deltas. Environmental Research Letters. 2019;14(2):025002. https://doi.org/10.1088/1748-9326/aaf0de
  101. 101. Trettin CC, Dai Z, Tang W, Lagomasino D, Thomas N, Lee SK, et al. Mangrove carbon stocks in Pongara National Park, Gabon. Estuarine, Coastal and Shelf Science. 2021;259:107432https://doi.org/10.1016/j.ecss.2021.107432
  102. 102. Pham TD, Yokoya N, Xia J, Ha NT, Le NN, Nguyen TTT, et al. Comparison of machine learning methods for estimating mangrove above-ground biomass using multiple source remote sensing data in the red river delta biosphere reserve, Vietnam. Remote Sensing. 2020;12(8):1334. https://doi.org/10.3390/rs12081334
  103. 103. Lebrasse MC, Schaeffer BA, Coffer MM, Whitman PJ, Zimmerman RC, Hill VJ, et al. Temporal stability of seagrass extent, leaf area and carbon storage in St. Joseph Bay, Florida: a semi-automated remote sensing analysis. Estuaries and Coasts. 2022;45(7):2082-101. https://doi.org/10.1007/s12237-022-01050-4
  104. 104. Li Z, Zan Q, Yang Q, Zhu D, Chen Y, Yu S. Remote estimation of mangrove aboveground carbon stock at the species level using a low-cost unmanned aerial vehicle system. Remote Sensing. 2019;11(9):1018. https://doi.org/10.3390/rs11091018
  105. 105. Ha NT, Manley-Harris M, Pham TD, Hawes I. A comparative assessment of ensemble-based machine learning and maximum likelihood methods for mapping seagrass using sentinel-2 imagery in Tauranga Harbor, New Zealand. Remote Sensing. 2020;12(3):355. https://doi.org/10.3390/rs12030355
  106. 106. Lausch A, Schaepman ME, Skidmore AK, Truckenbrodt SC, Hacker JM, Baade J, et al. Linking the remote sensing of geodiversity and traits relevant to biodiversity-part II: geomorphology, terrain and surfaces. Remote Sensing. 2020;12(22):3690. https://doi.org/10.3390/rs12223690
  107. 107. Warren MA, Simis SG, Martinez-Vicente V, Poser K, Bresciani M, Alikas K, et al. Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over coastal and inland waters. Remote Sensing of Environment. 2019;225:267-89. https://doi.org/10.1016/j.rse.2019.03.018
  108. 108. López-Serrano PM, Corral-Rivas JJ, Díaz-Varela RA, Álvarez-González JG, López-Sánchez CA. Evaluation of radiometric and atmospheric correction algorithms for aboveground forest biomass estimation using Landsat 5 TM data. Remote Sensing. 2016;8(5):369. https://doi.org/10.3390/rs8050369
  109. 109. Maciel F, Pedocchi F. Evaluation of ACOLITE atmospheric correction methods for Landsat-8 and Sentinel-2 in the Río de la Plata turbid coastal waters. International Journal of Remote Sensing. 2022;43(1):215-40. https://doi.org/10.1080/01431161.2021.2009149
  110. 110. Masek JG, Wulder MA, Markham B, McCorkel J, Crawford CJ, Storey J, et al. Landsat 9: Empowering open science and applications through continuity. Remote Sensing of Environment. 2020;248:111968. https://doi.org/10.1016/j.rse.2020.111968
  111. 111. Le NN, Pham TD, Yokoya N, Ha NT, Nguyen TTT, Tran TDT, et al. Learning from multimodal and multisensor earth observation dataset for improving estimates of mangrove soil organic carbon in Vietnam. International Journal of Remote Sensing. 2021;42(18):6866-90. https://doi.org/10.1080/01431161.2021.1945158

Downloads

Download data is not yet available.