Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

FTIR-assisted evaluation of xanthan gum as a biostimulant for groundnut seed priming and growth promotion

DOI
https://doi.org/10.14719/pst.8619
Submitted
1 April 2025
Published
31-07-2025 — Updated on 15-08-2025
Versions

Abstract

Experiments were conducted to evaluate the effect of biostimulant-based seed priming on the germination and seedling vigour of groundnut (Arachis hypogaea) seeds. Seeds with 75 % initial germination and 9 % moisture content were primed using xanthan gum, carrageenan, gellan gum, chitosan and gelatin at five concentrations (0.1 %-0.5 %), two soaking volumes (equal and double volume) and three soaking durations (1-3 hr). Seed quality parameters were assessed under both normal and stress conditions. The results indicated that seeds primed with 0.2 % xanthan gum (double volume, 1 hr) showed the highest germination (100 %), root length (16.20 cm), shoot length (8.00 cm) and vigour index (2420). These results were statistically similar to the 0.3 % xanthan gum treatment (double volume, 2 hours). The next best performance was observed with 0.3 % gellan gum (double volume, 1 hr), resulting in 100 % germination, 15 cm root length, 8.30 cm shoot length and a vigour index of 2335. In contrast, untreated control seeds displayed lower performance. The top five priming treatments were further evaluated under water stress conditions (60 %, 70 %, 80 % and 100 % water-holding capacity of sand). Seeds primed with 0.2 % xanthan gum (double volume, 1 hour) achieved the highest germination rates under all stress levels (60 %-100 %), whereas control seeds recorded lowest values. FTIR analysis of xanthan and gellan gum identified key functional groups associated with improved nutrient uptake, stress resistance and enhanced metabolic processes-factors contributing to increased plant growth in primed seeds. Biostimulant seed priming, particularly with xanthan and gellan gum, significantly enhances seed germination, vigour and stress tolerance in groundnut, suggesting a promising pre-sowing treatment for improved productivity in both irrigated and rainfed conditions.

References

  1. 1. de Moura OVT, Berbara RLL, de Oliveira Torchia DF, Da Silva HFO, van Tol de Castro TA, Tavares OCH, et al. Humic foliar application as sustainable technology for improving the growth, yield, and abiotic stress protection of agricultural crops: A review. J Saudi Soc Agric Sci. 2023;22(8):493-513. https://doi.org/10.1016/j.jssas.2023.05.001
  2. 2. Deshmukh DB, Marathi B, Sudini HK, Variath MT, Chaudhari S, Manohar SS, et al. Combining high oleic acid trait and resistance to late leaf spot and rust diseases in groundnut (Arachis hypogaea L.). Front Genet. 2020;11:514. https://doi.org/10.3389/fgene.2020.00514
  3. 3. Balasubramanian P, Subbulakshmi B, Balmurugan M, Gurumeenakshi G, Prasanth RC, Deepika R, et al. Nutritional profiling and its significance in groundnut: A review. Asian J Dairy Food Res. 2024;43(4). http://doi.org/10.18805/ajdfr.DR-2136
  4. 4. Du Jardin P. Plant biostimulants: Definition, concept, main categories, and regulation. Sci Hortic. 2015;196:3-14. https://doi.org/10.1016/j.scienta.2015.09.021
  5. 5. Sun Z, Li M, Yang J, Yang Y, Liang H, Yang S, et al. An updated review on biopolymer xanthan gum: Properties, modifications, nanoagrochemicals, and its versatile applications in sustainable agriculture. Int J Biol Macromol. 2024;281(Part 4):136562. https://doi.org/10.1016/j.ijbiomac.2024.136562
  6. 6. Eevera T, Chinnasamy GP, Venkatesan S, Navamaniraj KN, Albert VA, Anandhan J. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy: A tool to determine groundnut seed quality. Legume Res. 2024;47(7):1165-71. http://dx.doi.org/10.18805/LR-5120
  7. 7. Qiu Y, Amirkhani M, Mayton H, Chen Z, Taylor AG. Biostimulant seed coating treatments to improve cover crop germination and seedling growth. Agronomy. 2020;10(2):154. https://doi.org/10.3390/agronomy10020154
  8. 8. International Seed Testing Association (ISTA). International rules for seed testing. Switzerland: ISTA; 2009.
  9. 9. Abdul-Baki AA, Anderson JD. Vigour determination in soybean seed by multiple criteria. Crop Sci. 1973;13(6):630. http://doi.org/10.2135/cropsci1973.0011183X001300060013x
  10. 10. Rangaswamy M. Statistical analysis of the nonhomogeneity detector for non-Gaussian interference backgrounds. IEEE Trans Signal Process. 2005;53(6):2101-11. https://doi.org/10.1109/TSP.2005.847843
  11. 11. Vijayalakshmi V, Sathish S, Sivasubramaniam K, Malarkodi K, Sujatha K, Sundaralingam K, et al. Role of hydrophilic biopolymers concoction seed coating on seed germination and field performance of blackgram (Vigna mungo L.). Legume Res. 2024;47(9):1464-72. http://dx.doi.org/10.18805/LR-5189
  12. 12. Vijayalakshmi V, Sathish S, Umarani R. Effect of xanthan gum seed coating on seed germination and seedling vigour of finger millet (Eleusine coracana L.). Environ Conserv J. 2024;25(1):206-10. https://doi.org/10.36953/ECJ.24342669
  13. 13. Sim DHH, Tan IAW, Lim LLP, Hameed BH. Encapsulated biochar-based sustained release fertilizer for precision agriculture: A review. J Clean Prod. 2021;303:127018. http://dx.doi.org/10.1016/j.jclepro.2021.127018
  14. 14. Sorze A, Valentini F, Dorigato A, Pegoretti A. Development of a xanthan gum-based superabsorbent and water-retaining composites for agricultural and forestry applications. Molecules. 2023;28(4):1952. https://doi.org/10.3390/molecules28041952
  15. 15. Smolar J, Fortuna B, Logar J, Sorze A, Valentini F, Macek M, et al. Reducing drought vulnerability of forest soils using xanthan gum-based soil conditioners. Heliyon. 2024;10(21):e39974. https://doi.org/10.1016/j.heliyon.2024.e39974
  16. 16. Gupta S, Doležal K, Kulkarni MG, Balázs E, Van Staden J. Role of non-microbial biostimulants in regulation of seed germination and seedling establishment. Plant Growth Regul. 2022;97(2):271-313. http://doi.org/10.1007/s10725-021-00794-6
  17. 17. Al-Khayri JM, Rashmi R, Toppo V, Chole PB, Banadka A, Sudheer WN, et al. Plant secondary metabolites: the weapons for biotic stress management. Metabolites. 2023;13(6):716. https://doi.org/10.3390/metabo13060716
  18. 18. Lu Y, Zhao X, Fang S. Characterization, antimicrobial properties, and coatings application of gellan gum oxidized with hydrogen peroxide. Foods. 2019;8(1):31. https://doi.org/10.3390/foods8010031
  19. 19. Causin HF. The central role of amino acids on nitrogen utilization and plant growth. J Plant Physiol. 1996;149(3-4):358-62. https://doi.org/10.1016/S0176-1617(96)80134-9
  20. 20. Ojiewo CO, Janila P, Bhatnagar-Mathur P, Pandey MK, Desmae H, Okori P, et al. Advances in crop improvement and delivery research for nutritional quality and health benefits of groundnut (Arachis hypogaea) Front Plant Sci. 2020;11:29. https://doi.org/10.3389/fpls.2020.00029
  21. 21. Reed RC, Bradford KJ, Khanday I. Seed germination and vigour: Ensuring crop sustainability in a changing climate. Heredity. 2022;128(6):450-9. https://doi.org/10.1038/s41437-022-00497-2
  22. 22. Katzbauer B. Properties and applications of xanthan gum. Polym Degrad Stab. 1998;59(1-3):81-4. https://doi.org/10.1016/S0141-3910(97)00180-8
  23. 23. Psomas SK, Liakopoulou-Kyriakides M, Kyriakidis DA. Optimization study of xanthan gum production using response surface methodology. Biochem Eng J. 2007;35(3):273-80. http://dx.doi.org/10.1016/j.bej.2007.01.036
  24. 24. Berninger T, Dietz N, González López Ó. Water-soluble polymers in agriculture: xanthan gum as an eco-friendly alternative to synthetics. Microb Biotechnol. 2021;14(5):1881-96. https://doi.org/10.1111/1751-7915.13867
  25. 25. Cosgrove DJ. Building an extensible cell wall. Plant Physiol. 2022;189(3):1246-77. https://doi.org/10.1093/plphys/kiac184

Downloads

Download data is not yet available.