Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Assessment of bioactive compounds and antioxidant properties of Schumannianthus dichotomus Roxb. obtained via a microwave-assisted extraction method

DOI
https://doi.org/10.14719/pst.8635
Submitted
2 April 2025
Published
01-12-2025

Abstract

This study focuses on assessing the bioactive compounds, particularly regarding their antioxidant capabilities. The research utilized microwave-assisted extraction (MAE) to obtain 80 % ethanolic and aqueous extracts from the leaves, offshoots and rhizomes of Schumannianthus dichotomus Roxb. A phytochemical analysis was conducted on the three extracts to identify secondary metabolites, including alkaloids, flavonoids, phenolics, glycosides, phytosterols and tannins. Total phenolic content was assessed using the Folin-Ciocalteu method, whereas the total flavonoid content was measured employing the aluminium chloride colorimetric technique. Concurrently, the antioxidant capacity was evaluated utilizing DPPH, ABTS and FRAP assays. The results revealed that all plant extracts demonstrated the presence of phenols, flavonoids, glycosides and phytosterols. The leaves extracted with 80 % ethanol yielded the greatest amount of phenolics, recorded at 2.797 ± 0.117 mg GAE/g sample, while the aqueous extract of the leaves had the highest concentration of flavonoids, measuring 0.544 ± 0.062 mg CE/g sample. Additionally, the most antioxidant activities, particularly for DPPH and ABTS, were obtained in the 80 % ethanol extract from the rhizomes, exhibiting trolox equivalent values of 0.212 ± 0.003 and 2.044 ± 0.031 mg TE/g sample, respectively. Meanwhile, the highest reducing power was observed in the 80 % ethanol extract from the offshoots, measuring 3.864 ± 0.292 mg TE/g sample. Findings also indicated a strong positive correlation between TPC and FRAP, closely followed by the correlation between TPC and DPPH. The findings suggest that S. dichotomus is a reliable source of antioxidant qualities, highlighting its potential use in treating many disorders, especially those associated with oxidative stress.

References

  1. 1. Radha SP, Pundir A. Review on ethnomedicinal plant: Trillium govanianum Wall. Ex D. Don. Int J Theor Appl Sci. 2019;11(2):4–9.
  2. 2. Farag RS, Abdel-Latif MS, Abd El Baky HH, Tawfeek LS. Phytochemical screening and antioxidant activity of some medicinal plants’ crude juices. Biotechnol Rep. 2020;28:e00536. https://doi.org/10.1016/j.btre.2020.e00536
  3. 3. Yu M, Gouvinhas I, Rocha J, Barros AI. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Sci Rep. 2021;11(1):10041. https://doi.org/10.1038/s41598-021-89437-4
  4. 4. Veldkamp JF, Turner IM. The correct name for Schumannianthus dichotomus (Marantaceae). Kew Bull. 2016;71:1–4. https://doi.org/10.1007/s12225-016-9660-7
  5. 5. Sajib NH, Uddin SB. Ethnomedicinal study of plants in Hathazari, Chittagong, Bangladesh. Pertanika J Trop Agric Sci. 2015;38(2):197–210.
  6. 6. Basher MA, Hoque MdR, Roy R, Hosen S, Karim I, Bhowmik T, et al. Sex-dependent variations in antinociceptive and antipyretic effects of rhizome and stem extract of Schumannianthus dichotomus Roxb. in male and female mice. Indonesian J Pharm. 2020;31(4):323–34. https://doi.org/10.22146/ijp.602
  7. 7. Akter A, Roy R, Basher MA. In-vivo hepatoprotective and hypoglycemic effects of methanolic extract of Schumannianthus dichotomus rhizome. Phytomedicine Plus. 2023;3(3):100459. https://doi.org/10.1016/j.phyplu.2023.100459
  8. 8. Maneenoon K, Khuniad C, Teanuan Y, Saedan N, Prom-in S, Rukleng N, et al. Ethnomedicinal plants used by traditional healers in Phatthalung Province, Peninsular Thailand. J Ethnobiol Ethnomed. 2015;11(43):1–20. https://doi.org/10.1186/s13002-015-0031-5
  9. 9. Department of Fine Arts. Textbook of Medicine, Royal Issue of Rama V. Vol. 2. Bangkok: Amarin Printing and Publishing Public Company; 1999 (in Thai).
  10. 10. Park CH, Xu H, Yeo HJ, Park YE, Hwang G-S, Park NI, et al. Enhancement of the flavone contents of Scutellaria baicalensis hairy roots via metabolic engineering using maize Lc and Arabidopsis PAP1 transcription factors. Metab Eng. 2021;64:64–73. https://doi.org/10.1016/j.ymben.2021.01.003
  11. 11. Boonman N, Wanna C, Chutrtong J, Wongwiwat P, Chunchob S, Phakpaknam S. Microwave-assisted extraction of Tiliacora triandra leaves for functional ice cream production. Plant Sci Today. 2024;11(2):705–15. https://doi.org/10.14719/pst.3234
  12. 12. Zahra SFT, Shahriar M, Zohora FT, Das S, Akter R, Bhuiyan MA. Phytoconstituents screening and analysis of antioxidant, membrane stabilizing, and thrombolytic properties of leaves and rhizomes of Schumannianthus dichotomus (Roxb.) Gagnep. Trop J Nat Prod Res. 2024;8(9):8474–81. https://doi.org/10.26538/tjnpr/v8i9.33
  13. 13. González-Palma I, Escalona-Buendía HB, Ponce-Alquicira E, Téllez-Téllez M, Gupta VK, Díaz-Godínez G, et al. Evaluation of the antioxidant activity of aqueous and methanol extracts of Pleurotus ostreatus in different growth stages. Front Microbiol. 2016;7:1099. https://doi.org/10.3389/fmicb.2016.01099
  14. 14. Haminiuk CWI, Plata-Oviedo MSV, de Mattos G, Carpes ST, Branco IG. Extraction and quantification of phenolic acids and flavonols from Eugenia pyriformis using different solvents. J Food Sci Technol. 2014;51(10):2862–6. https://doi.org/10.1007/s13197-012-0759-z
  15. 15. Mujtaba A, Masud T, Ahmad A, Naqvi SMS, Qazalbash MA, Levin RE. Effect of solvents on extraction yield, total flavonoid, total phenolic contents, DPPH scavenging activity and antibacterial potential of three apricot cultivars. Transylvanian Rev. 2016;24(10):1662–76.
  16. 16. Silva APSAD, Nascimento da Silva LC, Martins da Fonseca CS, De Araujo JM, Correia MTDS, Cavalcanti MDS, et al. Antimicrobial activity and phytochemical analysis of organic extracts from Cleome spinosa Jaqc. Front Microbiol. 2016;7:963. https://doi.org/10.3389/fmicb.2016.00963
  17. 17. Fratta Pasini AM, Cominacini L. Potential benefits of antioxidant phytochemicals on endogenous antioxidants defences in chronic diseases. Antioxidants. 2023;12(4):890. https://doi.org/10.3390/antiox12040890
  18. 18. Roopashree TS, Raman D, Shobha Rani RH, Narendra C. Antibacterial activity of antipsoriatic herbs: Cassia tora, Momordica charantia and Calendula officinalis. Int J Appl Res Nat Prod. 2008;1(3):20–8.
  19. 19. Seubnooch P, Wattanarangsan J, Thamsermsang O, Booranasubkajorn S, Laohapand T, Akarasereenont P. Chemical profiling of an antipyretic drug, Thai herbal Harak formula, by liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Siriraj Med J. 2018;70(2):159–68.
  20. 20. Plan MAT, Wang J, Tang J, Lee YZ, Ng K. Evaluation of α-glucosidase inhibition potential of some flavonoids from Epimedium brevicornum. Food Sci Technol. 2013;53(2):492–8. https://doi.org/10.1016/j.lwt.2013.04.002
  21. 21. Nugraha SE, Achmad S, Sitompul E. Antibacterial activity of ethyl acetate fraction of passion fruit peel (Passiflora edulis Sims) on Staphylococcus aureus and Escherichia coli. Indones J Pharm Clin Res. 2019;2(1):7–12. https://doi.org/10.32734/idjpcr.v2i1.972
  22. 22. Chan KW, Iqhal S, Khong NMH, Ooi DJ, Ismail M. Antioxidant activity of phenolics-saponins rich fraction prepared from defatted kenaf seed meal. Food Sci Technol. 2014;56(1):181–6. https://doi.org/10.1016/j.lwt.2013.10.028
  23. 23. Bhattacharya SA, Maity SU, Pramanick DE, Hazra AK, Choudhury MA. HPLC of phenolic compounds, antioxidant and antimicrobial activity of bulbs from three Ornithogalum species available in India. Int J Pharm Pharm Sci. 2016;8(7):187–92.
  24. 24. Naz R, Roberts TH, Bano A, Nosheen A, Yasmin H, Hassan MN, et al. GC-MS analysis, antimicrobial, antioxidant, antilipoxygenase and cytotoxic activities of Jacaranda mimosifolia methanol leaf extracts and fractions. PLoS One. 2020;15(7):e0236319. https://doi.org/10.1371/journal.pone.0236319
  25. 25. Ma Y-L, Sun P, Feng J, Yuan J, Wang Y, Shang Y-F, et al. Solvent effect on phenolics and antioxidant activity of Huangshan Gongju (Dendranthema morifolium (Ramat) Tzvel. cv. Gongju) extract. Food Chem Toxicol. 2021;147:111875. https://doi.org/10.1016/j.fct.2020.111875
  26. 26. Sharifi-Rad M, Pohl P, Epifano F, Zengin G, Jaradat N, Messaoudi M. Teucrium polium (L.): phytochemical screening and biological activities at different phenological stages. Molecules. 2022;27(5):1561. https://doi.org/10.3390/molecules27051561
  27. 27. Gudiño I, Martín A, Casquete R, Prieto MH, Ayuso MC, Córdoba MD. Evaluation of broccoli (Brassica oleracea var. italica) crop by-products as sources of bioactive compounds. Sci Hortic. 2022;304:111284. https://doi.org/10.1016/j.scienta.2022.111284
  28. 28. Kaurinovic B, Vastag D. Flavonoids and phenolic acids as potential natural antioxidants. Antioxidants. 2019;2(1):1–4. https://doi.org/10.5772/intechopen.83731
  29. 29. Yu J, Ahmedna M, Goktepe I. Effects of processing methods and extraction solvents on concentration and antioxidant activity of peanut skin phenolics. Food Chem. 2005;90(1–2):199–206. https://doi.org/10.1016/j.foodchem.2004.03.048
  30. 30. O’sullivan AM, O’callaghan YC, O’grady MN, Hayes M, Kerry JP, O’brien NM. The effect of solvents on the antioxidant activity in Caco-2 cells of Irish brown seaweed extracts prepared using accelerated solvent extraction (ASE®). J Funct Foods. 2013;5(2):940–8. https://doi.org/10.1016/j.jff.2013.02.007
  31. 31. Ferreira O, Pinho SP. Solubility of flavonoids in pure solvents. Ind Eng Chem Res. 2012;51(18):6586–90. https://doi.org/10.1021/ie300211e
  32. 32. Ye F, Liang Q, Li H, Zhao G. Solvent effects on phenolic content, composition, and antioxidant activity of extracts from florets of sunflower (Helianthus annuus L.). Ind Crops Prod. 2015;76:574–81. https://doi.org/10.1016/j.indcrop.2015.07.063
  33. 33. Escribano-Bailon M. Polyphenol extraction from foods. In: Santos-Buelga C, Williamson G, editors. Methods in polyphenol analysis. The Royal Society of Chemistry; 2003. p. 1–16.
  34. 34. Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants. 2019;8(4):96. https://doi.org/10.3390/plants8040096
  35. 35. Ekaluo UB, Ikpeme EV, Ekerette EE, Chukwu CI. In vitro antioxidant and free radical activity of some Nigerian medicinal plants: bitter leaf (Vernonia amygdalina L.) and guava (Psidium guajava Del.). Res J Med Plant. 2015;9(5):215–26. https://doi.org/10.3923/rjmp.2015.215.226
  36. 36. Salas-Pérez L, Moncayo-Lujan MD, Borroel-García VJ, Guzmán-Silos TL, Ramírez-Aragón MG. Composición fitoquímica y actividad antioxidante en tres variedades de albahaca por efecto de distintos solventes. Rev Mex Cienc Agric. 2022;13(spe28):113–23. https://doi.org/10.29312/remexca.v13i28.3267
  37. 37. Kamarudin NA, Muhamad N, Salleh NN, Tan SC. Impact of solvent selection on phytochemical content, recovery of tannin and antioxidant activity of Quercus infectoria galls. Pharmacogn J. 2021;13(5):1195–204. https://doi.org/10.5530/pj.2021.13.153
  38. 38. Dowlath MJH, Karuppannan SK, Darul Raiyaan GI, Mohamed Khalith SB, Subramanian S, Arunachalam KD. Effect of solvents on phytochemical composition and antioxidant activity of Cardiospermum halicacabum (L.) extracts. Pharmacogn J. 2020;12(6):1241–51. https://doi.org/10.5530/pj.2020.12.173
  39. 39. Alam MN, Bristi NJ, Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J. 2013;21(2):143–52. https://doi.org/10.1016/j.jsps.2012.05.002
  40. 40. Weerakul T, Peerakam N, Rattanachitthawat N, Hadpech S, Thampithak A. Bioactive phenolics and flavonoids, antioxidants, anti-inflammatory, enzyme-inhibitory and cytotoxic activities of aerial part of Trachyspermum roxburghianum (DC.) Craib. Trends Sci. 2024;21(3):7268. https://doi.org/10.48048/tis.2024.7268
  41. 41. Aliyazicioglu R, Korkmaz N, Akkaya S, Sener SO, Badem M, Karaoglu SA, et al. Phenolic components, antioxidant and antimicrobial activities of Centranthus longiflorus L. Int J Adv Res Biol Sci. 2016;3(10):80–7. https://doi.org/10.22192/ijarbs.2016.03.10.012
  42. 42. Pretti IR, da Luz AC, Jamal CM, Batitucci MD. Variation of biochemical and antioxidant activity with respect to the phenological stage of Tithonia diversifolia Hemsl. (Asteraceae) populations. Ind Crops Prod. 2018;121:241–9. https://doi.org/10.1016/j.indcrop.2018.04.080
  43. 43. Abreu-Naranjo R, Paredes-Moreta JG, Granda-Albuja G, Iturralde G, González-Paramás AM, Alvarez-Suarez JM. Bioactive compounds, phenolic profile, antioxidant capacity and effectiveness against lipid peroxidation of cell membranes of Mauritia flexuosa L. fruit extracts from three biomes in the Ecuadorian Amazon. Heliyon. 2020;6:e05211. https://doi.org/10.1016/j.heliyon.2020.e05211
  44. 44. Mahomoodally MF, Sinan KI, Bene K, Zengin G, Orlando G, Menghini L, et al. Bridelia speciosa Müll. Arg. stem bark extracts as a potential biomedicine: from tropical western Africa to the pharmacy shelf. Antioxidants. 2020;9(2):128. https://doi.org/10.3390/antiox9020128

Downloads

Download data is not yet available.