Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Bioprospecting of pink-pigmented facultative methylotrophic bacteria as a potential bioinoculant for enhancing yield and nutrient uptake in rainfed agroecosystems: A review

DOI
https://doi.org/10.14719/pst.8649
Submitted
3 April 2025
Published
27-10-2025

Abstract

Cotton is a valuable fibre and cash crop vital to the Indian economy, both in agriculture and industry. India is one of the world's largest cotton producers and the crop has significant implications for the rural economy and industrial sectors. It provides the basic raw material to cotton textile industry. In India, it provides direct livelihood to 6 million farmers and about 40-50 million people are employed in cotton trading and its processing. Cotton is mainly cultivated as a rainfed crop in Tamil Nadu. Cotton productivity increased for several years before plateauing from 2015. In Tamil Nadu, during 2022-23, cotton was cultivated over 1.72 lakh hectares, with a production of 3.11 lakh bales and a productivity of 313 kg/ha. Currently, cotton cultivation in Tamil Nadu is primarily threatened by low productivity due to severe climate change, biotic stress, rising temperatures and inconsistent rainfall distribution and water availability in arid and semi-arid areas. In dryland agriculture, drought impedes germination, seedling growth, interferes with photosynthesis and increases CO2 loss through transpiration, thus increasing the competition between vegetative and reproductive aspects for nutrients and carbohydrates. The phyllosphere microflora plays a crucial role in uncovering plant stress mitigation pathways and identifying beneficial microbial strains. However, detailed evidence on the phyllosphere bacterial population of cotton and its role in mitigating abiotic stress remains limited. In this context, the present study focuses on Pink-Pigmented Facultative Methylotrophs (PPFMs), which hold significant potential as sustainable alternatives to conventional chemical inputs for enhancing cotton resilience in rainfed agroecosystems.

References

  1. 1. Santosh S, Santosh HB, Sreenivasa MN. Assessment of native pink pigmented facultative methylotrophs of chilli (Capsicum annuum L.) for their plant growth promotional abilities. International Journal of Current Microbiology and Applied Sciences. 2019;8(1):1196–205. https://doi.org/10.20546/ijcmas.2019.801.126
  2. 2. Subhaswaraj P, Jobina R, Parasuraman P, Siddhardha B. Plant growth promoting activity of pink pigmented facultative methylotroph–Methylobacterium extorquens MM2 on Lycopersicon esculentum L. Journal of Applied Biology and Biotechnology. 2017;5:42–6. https://doi.org/10.7324/jabb.2017.50107
  3. 3. Cakmakci R. The variability of the predominant culturable plant growth promoting rhizobacterial diversity in the acidic tea rhizosphere soils in the eastern Black Sea region. Alinteri Journal of Agricultural Science. 2019;34(2):175–81.
  4. https://doi.org/10.28955/alinterizbd.639020
  5. 4. Agafonova NV, Kaparullina EN, Doronina NV, Trotsenko YA. Phosphate solubilizing activity of aerobic methylobacteria. Microbiology. 2013;82(6):864–7. https://doi.org/10.1134/S0026261714010020
  6. 5. Hüve K, Christ MM, Kleist E, Uerlings R, Niinemets Ü, Walter A, et al. Simultaneous growth and emission measurements demonstrate an interactive control of methanol release by leaf expansion and stomata. Journal of Experimental Botany. 2007;58(7):1783–93. https://doi.org/10.1093/jxb/erm038
  7. 6. Photolo MM, Sitole L, Mavumengwana V, Tlou MG. Genomic and physiological investigation of heavy metal resistance from plant endophytic Methylobacterium radiotolerans MAMP 4754, isolated from Combretum erythrophyllum. International Journal of Environmental Research and Public Health. 2021;18(3):997. https://doi.org/10.3390/ijerph18030997
  8. 7. Vannucchi F, Imperato V, Saran A, Staykov S, D’Haen J, Sebastiani L, et al. Inoculated seed endophytes modify the poplar responses to trace elements in polluted soil. Agronomy. 2021;11(10):1987. https://doi.org/10.3390/agronomy11101987
  9. 8. Gamit HA, Naik H, Chandarana KA, Chandwani S, Amaresan N. Secondary metabolites from methylotrophic bacteria: Their role in improving plant growth under a stressed environment. Environmental Science and Pollution Research. 2023;30(11):28563–74. https://doi.org/10.1007/s11356-023-25505-8
  10. 9. Kumar M, Tomar RS, Lade H, Paul D. Methylotrophic bacteria in sustainable agriculture. World Journal of Microbiology and Biotechnology. 2016;32(7):120. https://doi.org/10.1007/s11274-016-2074-8
  11. 10. Abd El Gawad HG, Ibrahim MF, Abd El Hafez AA, Abou El Yazied A. Contribution of pink pigmented facultative methylotrophic bacteria in promoting antioxidant enzymes, growth and yield of snap bean. American–Eurasian Journal of Agricultural and Environment Science. 2015;15:1331–45. https://doi.org/10.5829/idosi.aejaes.2015.15.7.12709
  12. 11. Chowdhury AA, Basak N, Islam E. Removal of uranium from water using biofilm of uranium sensitive Methylobacterium sp. Journal of Hazardous Materials Advances. 2023;10:100296. https://doi.org/10.1016/j.hazadv.2023.100296
  13. 12. Jayashree S, Annapurna B, Jayakumar R, Sa T, Seshadri S. Screening and characterization of alkaline protease produced by a pink pigmented facultative methylotrophic (PPFM) strain, MSF 46. Journal of Genetic Engineering and Biotechnology. 2014;12(2):111–20. https://doi.org/10.1016/j.jgeb.2014.11.002
  14. 13. Joel GV, Latha PC, Gopal AV, Sreedevi B. Isolation and characterization of pink pigmented facultative methylotrophic bacteria: An in vitro evaluation of the isolates for plant growth promotion on rice. Biological Forum. 2023;15(2):1167–79.
  15. 14. Lee KH, Munusamy M, Kim CW, Lee HS, Selvaraj P, Sa T. Isolation and characterization of the IAA producing methylotrophic bacteria from phyllosphere of rice cultivars (Oryza sativa L). Korean Journal of Soil Science and Fertilizer. 2004;37:235–44. https://doi.org/10.1007/s00374-006-0083-8
  16. 15. Lee HS, Madhaiyan M, Kim CW, Choi SJ, Chung KY, Sa TM. Physiological enhancement of early growth of rice seedlings (Oryza sativa L) by production of phytohormone of N₂ fixing methylotrophic isolates. Biology and Fertility of Soils. 2006;42(5):402–8. https://doi.org/10.1007/s00374-006-0083-8
  17. 16. Nysanth NS, Anu Rajan S, Sivapriya SL, Anith KN. Pink pigmented facultative methylotrophs (PPFMs): Potential bioinoculants for sustainable crop production. Journal of Pure and Applied Microbiology. 2006;17(2):660–81. https://doi.org/10.22207/JPAM.17.2.17
  18. 17. Kovaleva J, Degener JE, van der Mei HC. Methylobacterium spp. are Gram negative or Gram variable, pleomorphic, non spore forming, vacuolated, rod shaped cells. Journal of Clinical Microbiology. 2014;52(5):1317–21. https://doi.org/10.1128/JCM.03561 13
  19. 18. Ardley JK, O’Hara GW, Reeve WG, Yates RJ, Dilworth MJ, Tiwari RP, et al. Root nodule bacteria isolated from South African Lotononis bainesii, L. listii and L. solitudinis are species of Methylobacterium that are unable to utilize methanol. Archives of Microbiology. 2009;191(4):311–8. https://doi.org/10.1007/s00203-009-0456-0
  20. 19. Green PN, Bousfield IJ. A taxonomic study of some Gram negative facultatively methylotrophic bacteria. Journal of General Microbiology. 1989;128(3):623–5. https://doi.org/10.1099/00221287-128-3-623
  21. 20. Patt TE, Cole GC, Hanson RS. Methylobacterium, a new genus of facultatively methylotrophic bacteria. International Journal of Systematic Bacteriology. 1976;26(2):226–9. https://doi.org/10.1099/00207713-26-2-226
  22. 21. Keltjens JT, Pol A, Reimann J, Op den Camp HJ. PQQ dependent methanol dehydrogenases: rare earth elements make a difference. Applied Microbiology and Biotechnology. 2014;98(14):6163–83. https://doi.org/10.1007/s00253-014-5766-8
  23. 22. Alessa O, Ogura Y, Fujitani Y, Takami H, Hayashi T, Sahin N, et al. Comprehensive comparative genomics and phenotyping of Methylobacterium species. Frontiers in Microbiology. 2021;12:740610. https://doi.org/10.3389/fmicb.2021.740610
  24. 23. Lai K, Nguyen NT, Miwa H, Yasuda M, Nguyen HH, Okazaki S. Diversity of Methylobacterium spp. in the rice of the Vietnamese Mekong Delta. Microbes and Environments. 2020;35(1):ME19111. https://doi.org/10.1264/jsme2.ME19111
  25. 24. Kolb S. Aerobic methanol oxidizing bacteria in soil. FEMS Microbiology Letters. 2009;300(1):1–10. https://doi.org/10.1111/j.1574-6968.2009.01681.x
  26. 25. Madhaiyan M, Poonguzhali S. Methylobacterium–plant interactions: High methylotrophic bacterial diversity and their beneficial associations with plants. Microbiological Research. 2014;169(6–7):337–53. https://doi.org/10.1016/j.micres.2013.09.014
  27. 26. Neyra CA, Dhar P. Methylotrophs and their associations with plants. Antonie van Leeuwenhoek. 1985;51:435–40. https://doi.org/10.1007/BF00393965
  28. 27. Van Dien SJ, Lidstrom ME. Stoichiometry and energetics of growth of Methylobacterium extorquens on reduced one carbon compounds. In: Microbial Growth on C1 Compounds. Dordrecht: Springer; 2002. p. 95–107. https://doi.org/10.1007/978-94-017-2153-3_11
  29. 28. Cao YR, Wang Q, Jin RX, Tang SK, Jiang Y, He WX, et al. Methylobacterium soli sp nov, a methanol utilizing bacterium isolated from the forest soil. Antonie van Leeuwenhoek. 2011;99(3):629–34. https://doi.org/10.1007/s10482-010-9535-0
  30. 29. Kim J, Chhetri G, Kim I, Kim MK, Seo T. Methylobacterium durans sp nov, a radiation resistant bacterium isolated from gamma ray irradiated soil. Antonie van Leeuwenhoek. 2020;113(2):211–20. https://doi.org/10.1007/s10482-019-01331-2
  31. 30. Ito M, Shimizu T, Nakamura A. Complete genome sequence of Kaistia sp. strain 32K, isolated from soil as a mixed single colony with Methylobacterium sp. strain ME121. Microbiology Resource Announcements. 2021;10(10):e00019–21. https://doi.org/10.1128/mra.00019-21
  32. 31. Dodd I, Zinovkina N, Safronova V, Belimov A. Rhizobacterial mediation of plant hormone status. Annals of Applied Biology. 2010;157(3):361–79. https://doi.org/10.1111/j.1744-7348.2010.00439.x
  33. 32. Irvine IC, Brigham CA, Suding KN, Martiny JB. The abundance of pink pigmented facultative methylotrophs in the root zone of plant species in invaded coastal sage scrub habitat. Plos One. 2012;7(2):e31026. https://doi.org/10.1371/journal.pone.0031026
  34. 33. Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, et al. Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Annals of Microbiology. 2015;65(4):1885–99. https://doi.org/10.1007/s13213-014-1027-4
  35. 34. Madhaiyan M, Poonguzhali S, Senthilkumar M, Pragatheswari D, Murugesan S, Lee JS, et al. Arachidicoccus rhizosphaerae sp. nov, a pink pigmented, facultative methylotroph isolated from rhizosphere soil. International Journal of Systematic and Evolutionary Microbiology. 2013;63(Pt 4):1343–9. https://doi.org/10.1099/ijs.0.041699-0
  36. 35. Sawan ZM. Cotton production and climatic factors: Studying the nature of its relationship by different statistical methods. Cogent Biology. 2017;3(1):1292882. https://doi.org/10.1080/23312025.2017.1292882
  37. 36. Patel P, Sharma R, Verma S. The role of pink pigmented facultative methylotrophs in grapevine growth enhancement under stress conditions. International Journal of Microbial Research. 2023;11(2):225–37. https://doi.org/10.1016/j.ijmr.2023.02.005
  38. 37. Yasmin H, Nosheen A, Naz R, Bano A, Keyani R. L tryptophan assisted PGPR mediated induction of drought tolerance in maize (Zea mays L). Journal of Plant Interactions. 2017;12:567–78. https://doi.org/10.1080/17429145.2017.1402212
  39. 38. Verma JP, Jaiswal DK, Krishna R, Prakash S, Yadav J, Singh V. Characterization and screening of thermophilic Bacillus strains for developing plant growth promoting consortium from hot spring of Leh and Ladakh region of India. Frontiers in Microbiology. 2018;9:1293. https://doi.org/10.3389/fmicb.2018.01293
  40. 39. Zhou C, Zhu L, Ma Z, Wang J, Qiu Y, Wang X. Enterobacter cloacae Rs 35 promotes cotton growth and enhances salt tolerance by regulating IAA levels and ion homeostasis. BMC Plant Biology. 2023;23(1):112. https://doi.org/10.1186/s12870-023-04641-w
  41. 40. Khan N, Bano A, Rahman MA. Plant growth promoting rhizobacteria mediated hormonal regulation for improving stress resilience in crops. Environmental and Experimental Botany. 2022;200:104921. https://doi.org/10.1016/j.envexpbot.2022.104921
  42. 41. Egamberdieva D, Wirth S, Bellingrath Kimura SD, Mishra J, Arora NK. Salt tolerant plant growth promoting rhizobacteria: An alternative way to improve crop productivity in saline soils. Plant Physiology and Biochemistry. 2017;119:20–31. https://doi.org/10.3389/fmicb.2019.02791
  43. 42. Aghafi D, Asgari Lajayer B, Ghorbanpour M. Engineering bacterial ACC deaminase for improving plant productivity under stressful conditions. In: Sharma V, Salwan R, Tawfeeq Al ani LK, editors. Molecular Aspects of Plant Beneficial Microbes in Agriculture. Amsterdam: Elsevier; 2020. p. 259–77. https://doi.org/10.1016/B978-0-12-818469-1.00022-
  44. 43. Madhaiyan M, Poonguzhali S, Sundaram S, Sa T. A new insight into foliar applied methanol influencing phylloplane methylotrophic dynamics and growth promotion of cotton (Gossypium hirsutum L) and sugarcane (Saccharum officinarum L). Environmental and Experimental Botany. 2005;57(1–2):168–76. https://doi.org/10.1016/j.envexpbot.2005.05.010
  45. 44. Canellas LP, Olivares FL, Aguiar NO, Jones DL, Nebbioso A, Mazzei P, et al. Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae. 2015;196:15–27. https://doi.org/10.1016/j.scienta.2015.09.013
  46. 45. Li M, Guo R, Yu F, Chen X, Zhao H, Li H, et al. Indole 3 Acetic Acid biosynthesis pathways in the plant beneficial bacterium Arthrobacter pascens ZZ21. International Journal of Molecular Sciences. 2018;19(2):443. https://doi.org/10.3390/ijms19020443
  47. 46. Hakim S, Naqqash T, Nawaz MS, Laraib I, Siddique MJ, Zia R, et al. Rhizosphere engineering with plant growth promoting microorganisms for agriculture and ecological sustainability. Frontiers in Sustainable Food Systems. 2021;5:617157. https://doi.org/10.3389/fsufs.2021.617157
  48. 47. Baky A, Amin A, El Sh A, Rashad H. The impact of some growth regulators on growth and productivity of faba bean plant grown under newly reclaimed soil conditions. Middle East Journal of Applied Sciences. 2021;11(4):81. https://doi.org/10.36632/mejas/2021.11.4.81
  49. 48. Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, et al. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Frontiers in Plant Science. 2016;7:815. https://doi.org/10.3389/fpls.2016.00815
  50. 49. Kruck TP, Burrow TE. Synthesis of feralex a novel aluminum/iron chelating compound. Journal of Inorganic Biochemistry. 2002;88(1):19–24. https://doi.org/10.1016/S0162-0134(01)00372-5
  51. 50. Zhang Y, Sen S, Giedroc DP. Iron acquisition by bacterial pathogens: Beyond tris catecholate complexes. ChemBioChem. 2020;21(14):1955–67. https://doi.org/10.1002/cbic.201900778
  52. 51. Ripa FA, Cao WD, Tong S, Sun JG. Assessment of plant growth promoting and abiotic stress tolerance properties of wheat endophytic fungi. BioMed Research International. 2019;2019:6105865. https://doi.org/10.1155/2019/6105865
  53. 52. Qian L, Chen X, Wang X, Huang S, Luo Y. The effects of flood, drought and flood followed by drought on yield in cotton. Agronomy. 2020;10:555. https://doi.org/10.3390/agronomy10040555
  54. 53. Parmar P, Nagesh S, Sindhu SS. Potassium solubilisation by rhizosphere bacteria: influence of nutritional and environmental conditions. Journal of Microbiology Research. 2016;3:25–31. https://doi.org/10.5923/j.microbiology.20130301.04
  55. 54. Nagaraju Y, Gundappagol RC, Mahadevaswamy. Mining saline soils to manifest plant stress alleviating halophilic bacteria. Current Microbiology. 2020;77:2265–78. https://doi.org/10.1007/s00284-020-02028-w
  56. 55. Nagaraju Y, Triveni S, Subhashreddy R, Vidyasagar B, Kumar BP, Chari KD, et al. Screening of zinc solubilizing and potassium releasing bacterial and fungal isolates from different rhizosphere soils. Bioscan. 2016;11:2187–92. https://doi.org/10.1007/s00284-020-02028-w
  57. 56. Morris BE, Henneberger R, Huber H, Moissl Eichinger C. Microbial syntrophy: interaction for the common good. FEMS Microbiology Reviews. 2013;37:384–406. https://doi.org/10.1111/1574-6976.12019
  58. 57. Abdulbaki AA, Anderson JD. Vigour determination in soybean by multiple criteria. Crop Science. 1973;13:630–7. https://doi.org/10.2135/cropsci1973.0011183X001300060013x
  59. 58. Ali S, Kim WC. Plant growth promotion under water: decrease of waterlogging induced ACC and ethylene levels by ACC deaminase producing bacteria. Frontiers in Microbiology. 2018;9:1096. https://doi.org/10.3389/fmicb.2018.01096
  60. 59. Evans A, Ausubel FM. Current Protocols in Molecular Biology. Greene Pub. Associates and Wiley-Interscience; 1987. p. 701–5.
  61. 60. Creus C, Sueldo R, Barassi C. Water relations and yield in Azospirillum inoculated wheat exposed to drought in the field. Canadian Journal of Botany. 2004;82:273–81. https://doi.org/10.1139/B03-119
  62. 61. Glick BR, Cheng Z, Czarny J, Duan J. Promotion of plant growth by ACC deaminase producing soil bacteria. European Journal of Plant Pathology. 2007;119:329–39. https://doi.org/10.1007/s10658-007-9162-4
  63. 62. Gordon SA, Weber RP. Colorimetric estimation of indole acetic acid. Plant Physiology. 1951;26:192–5. https://doi.org/10.1104/pp.26.1.192
  64. 63. Barra PJ, Inostroza NG, Acuña JJ, Mora ML, Crowley DE, Jorquera MA. Formulation of bacterial consortia from avocado (Persea americana Mill) and their effect on growth, biomass and superoxide dismutase activity of wheat seedlings under salt stress. Applied Soil Ecology. 2016;102:80–91. https://doi.org/10.1016/j.apsoil.2016.02.014
  65. 64. Bashan Y, Holguin G, De Bashan LE. Azospirillum plant relationships: physiological, molecular, agricultural and environmental advances (1997–2003). Canadian Journal of Microbiology. 2004;50:521–77. https://doi.org/10.1139/W04-035
  66. 65. Bates LS, Waldern RD, Teare JD. Rapid determination of free proline in water stresses studies. Plant and Soil. 1973;38:205–8. https://doi.org/10.1007/BF00018060
  67. 66. Heddi A, Grenier AM, Khatchadourian C, Charles H, Nardon P. Four intracellular genomes direct weevil biology: nuclear, mitochondrial, principal endosymbiont, and Wolbachia. Proceedings of the National Academy of Sciences of the USA. 1998;96:6814–9. https://doi.org/10.1073/pnas.96.12.6814
  68. 67. Holland MA, Long RL, Polacco JC. Methylobacterium spp: phylloplane bacteria involved in cross talk with the plant host? In: Lindow SE, Hecht Poinar EI, Elliott VJ, editors. Phyllosphere Microbiology. St Paul, MN: APS Press; 2002. p. 125–35. https://doi.org/10.1146/annurev.pp.45.060194.001213
  69. 68. Holland MA, Polacco JC. PPFMs and other contaminants: is there more to plant physiology than just plant. Annual Review of Plant Physiology. 1994;45:197–209. https://doi.org/10.1146/annurev.pp.45.060194.001213
  70. 69. Honma M, Shimomura T. Metabolism of 1 aminocyclopropane 1 carboxylic acid. Agricultural and Biological Chemistry. 1978;42:1825–31. https://doi.org/10.1080/00021369.1978.10863261
  71. 70. Castric KF, Castric PA. Method for rapid detection of cyanogenic bacteria. Applied and Environmental Microbiology. 1983;45:700–2. https://doi.org/10.1128/AEM.45.2.701-702.1983
  72. 71. Chandra D, Srivastava R, Glick BR, Sharma AK. Drought tolerant Pseudomonas spp. improve the growth performance of finger millet (Eleusine coracana (L) Gaertn) under non stressed and drought stressed conditions. Pedosphere. 2018;28:227–40. https://doi.org/10.1016/S1002-0160(18)60013-X
  73. 72. Chauhan H, Bagyaraj DJ, Selvakumar G, Sundaram SP. Novel plant growth promoting rhizobacteria prospects. Applied Soil Ecology. 2015;95:38–53. https://doi.org/10.1016/j.apsoil.2015.05.011
  74. 73. Chinnadurai C, Balachandar D, Sundaram SP. Characterization of 1 aminocyclopropane 1 carboxylate deaminase producing methylobacteria from phyllosphere of rice and their role in ethylene regulation. World Journal of Microbiology and Biotechnology. 2009;25:1403–11. https://doi.org/10.1007/s11274-009-0027-1
  75. 74. Cohen AC, Bottini R, Pontin M, Berli FJ, Moreno D, Boccanlandro H. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiologia Plantarum. 2015;153:79–90. https://doi.org/10.1111/ppl.12221
  76. 75. Colby J, Zatman LJ. Trimethylamine metabolism in obligate and facultative methylotrophs. Biochemical Journal. 1973;132:101–12. https://doi.org/10.1042/BJ1320101
  77. 76. Collins CH, Lyne PM. Microbiological Methods. London: Butterworths; 1970. p. 171–311.
  78. 77. Corpe WA, Jensen TE, Baxter M. Fine structure of cytoplasmic inclusions of some methylotrophic bacteria from plant surfaces. Archives of Microbiology. 1985;145:107–12. https://doi.org/10.1007/BF00446765
  79. 78. Wellner S, Lodders N, Kämpfer P. Diversity and biogeography of selected phyllosphere bacteria with special emphasis on Methylobacterium spp. Systematic and Applied Microbiology. 2011;34(8):621–30. https://doi.org/10.1016/j.syapm.2011.08.005
  80. 79. Kim J, Chhetri G, Kim I, Lee B, Jang W, Kim MK, et al. Methylobacterium terricola sp nov, a gamma radiation resistant bacterium isolated from gamma ray irradiated soil. International Journal of Systematic and Evolutionary Microbiology. 2020;70(4):2449–56. https://doi.org/10.1099/ijsem.0.004054
  81. 80. Ten LN, Li W, Elderiny NS, Kim MK, Lee SY, Rooney AP, et al. Methylobacterium segetis sp nov, a novel member of the family Methylobacteriaceae isolated from soil on Jeju Island. Archives of Microbiology. 2020;202(4):747–54. https://doi.org/10.1007/s00203-019-01784-z
  82. 81. Roodi D, Millner JP, McGill C, Johnson RD, Jauregui R, Card SD. Methylobacterium, a major component of the culturable bacterial endophyte community of wild Brassica seed. PeerJ. 2020;8:e9514. https://doi.org/10.7717/peerj.9514
  83. 82. Patel M, Islam S, Husain FM, Yadav VK, Park H, Yadav KK, et al. Bacillus subtilis ER 08, a multifunctional plant growth promoting Rhizobacterium, promotes the growth of fenugreek (Trigonella foenum graecum L) plants under salt and drought stress. Frontiers in Microbiology. 2023;14:1208743. https://doi.org/10.3389/fmicb.2023.1208743
  84. 83. Senthilkumar M, Pushpakanth P, Jose AP, Krishnamoorthy R, Anandham R. Diversity and functional characterization of endophytic Methylobacterium isolated from banana cultivars of South India and its impact on early growth of tissue culture banana plantlets. Journal of Applied Microbiology. 2021;131(5):2448–65. https://doi.org/10.1111/jam.15112
  85. 84. Rahim AA, Ibrahim NA, Ishak FN, Mean LJ, Ayub NA, Fazilah NN. Investigation of newly isolated Methylobacterium sp. as potential biofertilizer. In: Proceedings of IOP Conference Series: Earth and Environmental Science. 2021. https://doi.org/10.1088/1755-1315/765/1/012063
  86. 85. Deka Boruah HP, Yim WJ, Das AK, Sa T. Comparison of plant growth promoting Methylobacterium spp. and exogenous indole 3 acetic acid application on red pepper and tomato seedling development. Korean Journal of Soil Science and Fertilizer. 2010;43(4):452–60. https://doi.org/10.7745/KJSSF.2010.43.4.452
  87. 86. Ishak FN, Rahim AA, Mean LJ, Ayub NA, Fazilah NN. Preliminary analysis of endophytic plant growth promoting (pgp) Methylobacterium sp isolated from palm oil (Elaeis guineensis) leaves. In: Proceedings of IOP Conference Series: Earth and Environmental Science. 2021. https://doi.org/10.1088/1755-1315/765/1/012071
  88. 87. Kosmiatin M, Husni A, Salma S. In vitro growth response of patchouli (Pogostemon cablin) cultured in medium containing Methylobacterium spp. filtrate. In: Proceedings of IOP Conference Series: Earth and Environmental Science. 2021. https://doi.org/10.1088/1755-1315/762/1/012076
  89. 88. Christian N, Basurto BE, Toussaint A, Xu X, Ainsworth EA, Busby PE, et al. Elevated CO₂ reduces a common soybean leaf endophyte. bioRxiv. 2021. https://doi.org/10.1101/2021.04.06.438719
  90. 89. Dean JF, Middelburg JJ, Röckmann T, Aerts R, Blauw LG, Egger M, et al. Methane feedbacks to the global climate system in a warmer world. Reviews of Geophysics. 2018;56(1):207–50. https://doi.org/10.1002/2017RG000559
  91. 90. Idris R, Van’t Dijk P, Pometto A. Methylobacterium species as plant growth promoting bacteria: Non pathogenic role and potential applications in agriculture. Journal of Applied Microbiology. 2006;100(3):1231–41. https://doi.org/10.1111/j.1365-2672.2006.02951.x
  92. 91. Jiang L, An D, Wang X, Zhang K, Li G, Lang L, et al. Methylobacterium planium sp nov, isolated from a lichen sample. Archives of Microbiology. 2020;202(7):1709–15. https://doi.org/10.1007/s00203-020-01881-4
  93. 92. Pascual JA, Ros M, Martínez J, Carmona F, Bernabé A, Torres R, et al. Methylobacterium symbioticum sp nov, a new species isolated from spores of Glomus iranicum var tenuihypharum. Current Microbiology. 2020;77(9):2031–41. https://doi.org/10.1007/s00284-020-02101-4
  94. 93. Feng GD, Chen W, Zhang XJ, Zhang J, Wang SN, Zhu H. Methylobacterium nonmethylotrophicum sp nov, isolated from tungsten mine tailing. International Journal of Systematic and Evolutionary Microbiology. 2020;70(4):2867–72. https://doi.org/10.1099/ijsem.0.004112
  95. 94. Xiao Q, Li W, Kai Y, Chen P, Zhang J, Wang B. Occurrence prediction of pests and diseases in cotton on the basis of weather factors by long short term memory network. BMC Bioinformatics. 2019;20(S25). https://doi.org/10.1186/s12859-019-3262-y
  96. 95. Ram S, Mitra M, Shah F, Tirkey SR, Mishra S. Bacteria as an alternate biofactory for carotenoid production: A review of its applications, opportunities and challenges. Journal of Functional Foods. 2020;67:103867. https://doi.org/10.1016/j.jff.2020.103867
  97. 96. Thapa S, Prasanna R. Prospecting the characteristics and significance of the phyllosphere microbiome. Annals of Microbiology. 2018;68(5):229–45. https://doi.org/10.1007/s13213-018-1331-5
  98. 97. Juma PO, Fujitani Y, Alessa O, Oyama T, Yurimoto H, Sakai Y, et al. Siderophore for lanthanide and iron uptake for methylotrophy and plant growth promotion in Methylobacterium aquaticum strain 22A. Frontiers in Microbiology. 2022;13:921635. https://doi.org/10.3389/fmicb.2022.921635
  99. 98. Dipta B, Bhardwaj S, Kaushal M, Kirti S, Sharma R. Obliteration of phosphorus deficiency in plants by microbial interceded approach. Symbiosis. 2019;78(2):163–76. https://doi.org/10.1007/s13199-019-00600-y
  100. 99. Boyd M, Nkongolo KK. Nickel induces changes in expression of genes encoding 1 aminocyclopropane 1 carboxylic acid deaminase and glutathione reductase in Picea glauca. Chemical Ecology. 2021;37(7):589–602. https://doi.org/10.1080/02757540.2021.1937140
  101. 100. Sofy MR, Aboseidah AA, Heneidak SA, Ahmed HR. ACC deaminase containing endophytic bacteria ameliorate salt stress in Pisum sativum through reduced oxidative damage and induction of antioxidative defense systems. Environmental Science and Pollution Research. 2021;28(30):40971–91. https://doi.org/10.1007/s11356-021-13585-3
  102. 101. Ahmad J. 1 aminocyclopropane 1 carboxylic acid deaminase producing bacteria inoculation for improving the maize seed germination and seedling growth. Agricultural Science Journal. 2021;3(1):46–55. https://doi.org/10.56520/asj.v3i1.65
  103. 102. Alemneh AA, Zhou Y, Ryder MH, Denton MD. Large scale screening of rhizobacteria to enhance the chickpea–Mesorhizobium symbiosis using a plant based strategy. Rhizosphere. 2021;18:100361. https://doi.org/10.1016/j.rhisph.2021.100361
  104. 103. Ekimova GA, Fedorov DN, Doronina NV, Khmelenina VN, Mustakhimov II. AcdR protein is an activator of transcription of 1 aminocyclopropane 1 carboxylate deaminase in Methylobacterium radiotolerans JCM 2831. Antonie van Leeuwenhoek. 2022;115(9):1165–76. https://doi.org/10.1007/s10482-022-01764-2
  105. 104. Soundarajan S, Marimuthu R, Arunkumar K, Dhanaphal K, Venkatesan T, Sivakumar G. Pink pigmented facultative methylotrophic bacteria (PPFMs) as microbial farmers in small cardamom plantation. Pharma Innovation Journal. 2022;11(4):607–10. https://doi.org/10.1007/s10482-022-01764-X
  106. 105. Tani A, Sahin N, Fujitani Y, Kato A, Sato K, Kimbara K. Methylobacterium species promoting rice and barley growth and interaction specificity revealed with whole cell matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI TOF/MS) analysis. Plos One. 2015;10(6):e0129509. https://doi.org/10.1371/journal.pone.0129509
  107. 106. Prabhu S, Kumar S, Subramanian S, Sundaram SP. Suppressive effect of Methylobacterium fujisawaense against root knot nematode Meloidogyne incognita. Indian Journal of Nematology. 2009;39:165–9.
  108. 107. Yang T, Xin Y, Liu T, Li Z, Liu X, Wu Y, Wang M, Xiang M. Bacterial volatile-mediated suppression of root-knot nematode (Meloidogyne incognita). Plant Disease. 2021;106(5):1358–65. https://doi.org/10.1094/pdis-06-21-1139-re

Downloads

Download data is not yet available.