Research Articles
Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture
Augmenting brinjal productivity through foliar biostimulant application of symbiotic co-culture of acetic acid bacteria and yeast fermented cashew apple juice: A sustainable approach
Department of Agricultural Microbiology, Agricultural College and Research Institute, Madurai 625 104, Tamil Nadu, India
Department of Agricultural Microbiology, ICAR-TNAU, Krishi Vigyan Kendra, Vridhachalam, Cuddalore 606 001, Tamil Nadu, India
Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Madurai 625 104, Tamil Nadu, India
Department of Agricultural Extension, School of Agriculture and Animal Sciences, Gandhigram Rural Institute (DTBU), Gandhigram 624 302, Tamil Nadu, India
Department of Agricultural Microbiology, Agricultural College and Research Institute, Madurai 625 104, Tamil Nadu, India
Department of Agricultural Microbiology, Agricultural College and Research Institute, Madurai 625 104, Tamil Nadu, India
Abstract
The study evaluated the efficacy of Symbiotic Co-culture of Bacteria and Yeast (SCOBY), primarily Komagataeibacter rhaeticus and Brettanomyces bruxellensis as a biostimulant to enhance brinjal (Solanum melongena) growth and productivity. In India, ~90 % of cashew apples are discarded during cashew nut production. This study utilized SCOBY cultured in cashew apple waste as biostimulant foliar spray in a field experiment conducted in Semberi village, Cuddalore district (2023 - 2024), using the traditional Semberi brinjal variety in a Randomized Block Design (RBD) with three replications. Eight different foliar treatment combinations, involving cell-free extracts of SCOBY cultured in cashew apple juice were applied at 30, 45 and 60 Days After Transplanting (DAT). Growth and yield parameters were recorded throughout the season. Among the treatments, a 50:50 ratio of 1 % cashew apple juice-fermented SCOBY and 1 % Pink Pigmented Facultative Methylotrophs (PPFM) (T8) produced a significant amount of growth-promoting phytohormones, with 26.81 µg/mL of Indole-3-Acetic Acid (IAA) and 87.4 µg/mL of Gibberellic Acid (GA3), which enhanced root development, stem elongation and flowering in brinjal. T8-treated plants recorded a maximum height (163.02 cm), leaf area (88.27 cm²) and the highest chlorophyll content (35.90). These plants recorded earlier flowering (50 % flowering in 41 days), produced more flowers (47 flowers/ plant) and yielded more and larger fruits (14 fruits/ plant, with a length of 20 cm and girth of 7.1 cm), resulting in a maximum yield of 3.1 kg/ plant, compared to the control (1.8 kg/ plant). Additionally, nutrient uptake was higher in T8-treated plants (95.81 kg/ha N, 25.23 kg/ha P and 99.56 kg/ha K). Principal Component Analysis (PCA) confirmed a strong correlation between T8 treatment and improved yield parameters. This study highlights cashew apple juice-fermented SCOBY as a sustainable, eco-friendly biostimulant that enhances brinjal productivity, recycles agricultural waste and supports regenerative agriculture.
References
- 1. Dimidi E, Cox SR, Rossi M, Whelan K. Fermented foods: definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients. 2019;11(8):1806. https://doi.org/10.3390/nu11081806
- 2. Chakravorty S, Bhattacharya S, Bhattacharya D, Sarkar S, Gachhui R. Kombucha: A promising functional beverage prepared from tea. In: Grumezescu A, Holban A, editors. Non-alcoholic beverages. Woodhead Publishing. Cambridge: Woodhead Publ. 2019;285-327. https://doi.org/10.1016/B978-0-12-815270-6.00010-4
- 3. De Roos J, De Vuyst L. Acetic acid bacteria in fermented foods and beverages. Curr Opin Biotechnol. 2018;49:115-9. https://doi.org/10.1016/j.copbio.2017.08.007
- 4. Gayathry G, Maheswari UT, Jothilakshmi K, Amutha S. Improved functionality of roselle (Hibiscus sabdariffa) calyx extract blended kombucha, a fermented beverage. Plant Sci Today 2025;12(1). https://doi.org/10.14719/pst.3791
- 5. Kim J, Adhikari K. Current trends in kombucha: marketing perspectives and the need for improved sensory research. Beverages. 2020;6(1):15. https://doi.org/10.3390/beverages6010015
- 6. Jayalakshmi T, Gayathry G, Kumutha K, Sabarinathan KG, Amutha R, Veeramani P. Plausible avenues and applications of bioformulations from symbiotic culture of bacteria and yeast. J Pure Appl Microbiol. 2024;18(3):1489-501. https://doi.org/10.22207/JPAM.18.3.42
- 7. Di Natale C, De Gregorio V, Lagreca E, Mauro F, Corrado B, Vecchione R, et al. Engineered bacterial cellulose nanostructured matrix for incubation and release of drug-loaded oil in water nanoemulsion. Front Bioeng Biotechnol. 2022;10:851893. https://doi.org/10.3389/fbioe.2022.851893
- 8. Jothilakshmi K, Gayathry G, Jayalakshmi T. GCMS elucidation of bioactive metabolites from fermented kombucha tea. Int J Adv Biochem Res. 2024;8(Suppl 8)::458-62. https://doi.org/10.33545/26174693.2024.v8.i8Sg.1846
- 9. Sathianathan N, Karri RR, Gunavijayan G, Raj A, Mubarak NM, Latha V, et al. Optimisation of bacterial cellulose production by Novacetimonas hansenii isolated from pomegranate fruit wastes. J Mol Liq. 2025;422:126912. https://doi.org/10.1016/j.molliq.2025.126912
- 10. Rouphael Y, Colla G. Biostimulants in agriculture. Front Plant Sci. 2020;11:40. https://doi.org/10.3389/fpls.2020.00040
- 11. Galindo A, Jeronimo C, Spaans E, Weil M. An introduction to modern agriculture. Tierra Trop. 2007;3:91-96.
- 12. Saddam A, Fathurrohim MF, Rezaldi F, Kolo Y, Hidayanto F. The effect of fermentation waste from the kombucha biotechnology method of butterfly pea flowers (Clitoria ternatea L.) as liquid fertilizer on the growth of tomatoes (Lycopersicum esculantum L.). Agribios. 2022;20(2):179-86. https://doi.org/10.36841/agribios.v20i2.2291
- 13. Rezaldi F, Hidayanto F. Potential of fermentation waste from the kombucha biotechnology method of butterfly pea flower (Clitoria ternatea L) as liquid fertilizer for the growth of cayenne pepper (Capsicum frutescens L. var. cengek). J Cemara. 2022;19(2):79-88. https://doi.org/10.24929/fp.v19i2.2239
- 14. Hariadi H, Rezaldi F, Hidayanto F, Sumiardi A, Mujijah M, Fathurrohim MF, et al. Effect of biotechnological fermentation waste kombucha flower telang (Clitoria ternatea L.) as liquid fertilizer on the growth of sawey (Brassica chinensis var. parachinensis). J Biol Trop. 2023;23(3):173-80. https://doi.org/10.29303/jbt.v23i3.5081
- 15. Fathurrohim MF, Hidayanto F, Rezaldi F, Kolo Y, Kusumiyati K. Halal biotechnology on fermentation and liquid fertilizer preparation from kombucha waste of tecablowe waste in increasing eggplant (Solanum melongena) growth. Int J Mathla’ul Anwar Halal Issues. 2022;2(2):85-92. https://doi.org/10.30653/ijma.202222.66
- 16. Caruso G, Pokluda R, Sekara A, Kalisz A, Jezdinsky A, Kopta T, et al. Agricultural practices, biology and quality of eggplant cultivated in Central Europe: A review. Hort Sci (Prague). 2017;44(4):201-12. https://doi.org/10.17221/36/2016-HORTSCI
- 17. Rico R, Bullo M, Salas-Salvado J. Nutritional composition of raw fresh cashew (Anacardium occidentale L.) kernels from different origins. Food Sci Nutr. 2015;4(2):329-38. https://doi.org/10.1002/fsn3.294
- 18. Das I, Arora A. Post-harvest processing technology for cashew apple - A review. J Food Eng. 2017;194:87-98. https://doi.org/10.1016/j.jfoodeng.2016.09.011
- 19. Preethi P, Rajkumar AD, Shamsudheen M, Nayak MG. Prospects of cashew apple - A compilation report. Tech Bull. 2019;2:1-28. https://doi.org/10.13140/RG.2.2.34521.36967
- 20. Augustin A. Utilization of cashew apple. Reports of the 1st World Cashew Congress, Cochin. 2001;57-66.
- 21. Prommajak T, Leksawasdi N, Rattanapanone N. Selection of microorganisms for ethanol production from cashew apple juice. Chiang Mai J Sci. 2019;46(3):469-80.
- 22. Bric JM, Bostock RM, Silverstone SE. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol. 1991;57(2):535-8. https://doi.org/10.1128/aem.57.2.535-538.
- 23. Desai SA. Isolation and characterization of gibberellic acid (GA3) producing rhizobacteria from sugarcane roots. Biosci Discov. 2017;8(3):488-94.
- 24. Rangaswamy R. A textbook of agricultural statistics. New Delhi:New Age International; 1995.
- 25. Honorato TL, Rabelo MC, Goncalves LRB, Pinto GAS, Rodrigues S. Fermentation of cashew apple juice to produce high added value products. World J Microbiol Biotechnol. 2007;23:1409-15. https://doi.org/10.1007/s11274-007-9381-z
- 26. Tarafdar JC. Biostimulants for sustainable crop production. In: New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier. 2022;299-313. https://doi.org/10.1016/B978-0-323-85579-2.00004-6
- 27. Sivakumar R, Nandhitha GK, Chandrasekaran P, Boominathan P, Senthilkumar M. Impact of pink pigmented facultative methylotroph and PGRs on water status, photosynthesis, proline and NR activity in tomato under drought. Int J Curr Microbiol Appl Sci. 2017;6:1640-51. https://doi.org/10.20546/ijcmas.2017.606.192
- 28. Shahbazi H, Gahruie HH, Golmakani MT, Eskandari MH, Movahedi M. Effect of medicinal plant type and concentration on physicochemical, antioxidant, antimicrobial and sensorial properties of kombucha. Food Sci Nutr. 2018;6:2568-77. https://doi.org/10.1002/fsn3.873
- 29. Du Jardin P. Plant biostimulants: Definition, concept, main categories and regulation. Sci Hortic. 2015;196:3-14. https://doi.org/10.1016/j.scienta.2015.09.021
- 30. Colla G, Nardi S, Cardarelli M, Ertani A, Lucini L, Canaguier R, Rouphael Y. Protein hydrolysates as biostimulants in horticulture. Sci Hortic. 2015;196:28-38. https://doi.org/10.1016/j.scienta.2015.08.037
- 31. Nasuelli M, Novello G, Gamalero E, Massa N, Gorrasi S, Sudiro C, et al. PGPB and/or AM fungi consortia affect tomato native rhizosphere microbiota. Microorganisms. 2023;11(8):1891. https://doi.org/10.3390/microorganisms11081891
- 32. Shahrajabian MH, Cheng Q, Sun W. Using bacteria and fungi as plant biostimulants for sustainable agricultural production systems. Recent Pat Biotechnol. 2023;17(3):206-44. https://doi.org/10.2174/1872208316666220513093021
- 33. Shilev S. Plant-growth-promoting bacteria mitigating soil salinity stress in plants. Appl Sci. 2020;10(20):7326. https://doi.org/10.3390/app10207326
- 34. Rizqiani NF, Ambarwati E, Yuwono NW. Effect of dosage and frequency of giving liquid organic fertilizer on growth and yield of lowland beans (Phaseolus vulgaris L.). J. Soil Sci. Environ. Sci. 2007;7(1):43-53
- 35. Calvo P, Nelson L, Kloepper JW. Agricultural uses of plant biostimulants. Plant Soil. 2014;383:3-41. https://doi.org/10.1007/s11104-014-2131-8
- 36. Aamir M, Rai KK, Zehra A, Dubey MK, Kumar S, Shukla V, et al. Microbial bioformulation-based plant biostimulants: A plausible approach toward next generation of sustainable agriculture. In: Microbial Endophytes. Woodhead Publishing. 2020;195-225. https://doi.org/10.1016/B978-0-12-819654-0.00008-9
Downloads
Download data is not yet available.