Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Innovative breeding strategies in groundnut for climate resilience: A review

DOI
https://doi.org/10.14719/pst.8662
Submitted
3 April 2025
Published
28-07-2025 — Updated on 07-08-2025
Versions

Abstract

Peanut (Arachis hypogaea) is an important oilseed crop for food and economic security, especially in tropical and subtropical regions. However, climate change such as rising temperatures, variations in rainfall patterns and increased infection rates of pests and diseases poses a significant threat to production in many regions, though the degree of impact may vary depending on local conditions. Advancements in breeding, biotechnology methods and agronomic practices are essential to ensure sustainable peanut cultivation. This review emphasizes that by utilizing the wild genetic resources with advanced technologies to develop climate-resilient peanut varieties. Traditional breeding methods, including hybridization and mass selection, are integrated with modern approaches like Marker-Assisted Selection (MAS), Genomic Selection (GS) and High-Throughput Phenotyping (HTP) helps to produce a peanut variety with high yielding variety with tolerances to biotic and abiotic stress. Additionally, CRISPR-Cas9 and gene-editing tools enable precise improvements for stress tolerance, paving the way for sustainable groundnut production under changing climatic conditions. Moreover, digital tools such as remote sensing and predictive climate models help the breeding program to develop a variety to specific agro-climatic zones. By adopting these innovations, it is possible to enhance the adaptive capacity of groundnut while minimizing resource inputs. Despite these advanced techniques, challenges remain because groundnut has low genetic diversity and the need for region-specific solutions. This comprehensive approach aims to improve peanut production from the adverse effects of climate change, ensure food security and support the livelihoods of millions of smallholder farmers worldwide.

References

  1. 1. Ćeran M, Miladinović D, Đorđević V, Trkulja D, Radanović A, Glogovac S, et al. Genomics-assisted speed breeding for crop improvement: Present and future. Frontiers in Sustainable Food Systems. 2024;8:1383302. https://doi.org/10.3389/fsufs.2024.1383302
  2. 2. Cohen I, Zandalinas SI, Huck C, Fritschi FB, Mittler R. Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiologia Plantarum. 2021;171(1):66-76. https://doi.org/10.1111/ppl.13203
  3. 3. Hamidou F, Halilou O, Vadez V. Assessment of groundnut under combined heat and drought stress. Journal of Agronomy and Crop Science. 2013;199(1):1-11. https://doi.org/10.1111/j.1439-037X.2012.00518.x
  4. 4. Vara Prasad P, Boote KJ, Hartwell Allen Jr L, Thomas JM. Super-optimal temperatures are detrimental to peanut (Arachis hypogaea L.) reproductive processes and yield at both ambient and elevated carbon dioxide. Global Change Biology. 2003;9(12):1775-87. https://doi.org/10.1046/j.1365-2486.2003.00708.x
  5. 5. Hamidou F, Rathore A, Waliyar F, Vadez V. Although drought intensity increases aflatoxin contamination, drought tolerance does not lead to less aflatoxin contamination. Field Crops Research. 2014;156:103-10. https://doi.org/10.1016/j.fcr.2013.10.019
  6. 6. Naqvi RZ, Siddiqui HA, Mahmood MA, Najeebullah S, Ehsan A, Azhar M, et al. Smart breeding approaches in post-genomics era for developing climate-resilient food crops. Frontiers in Plant Science. 2022;13:972164. https://doi.org/10.3389/fpls.2022.972164
  7. 7. Ghosh S, Watson A, Gonzalez-Navarro OE, Ramirez-Gonzalez RH, Yanes L, Mendoza-Suárez M, et al. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature Protocols. 2018;13(12):2944-63. https://doi.org/10.1038/s41596-018-0072-z
  8. 8. Jähne F, Hahn V, Würschum T, Leiser WL. Speed breeding short-day crops by LED-controlled light schemes. Theoretical and Applied Genetics. 2020;133(8):2335-42. https://doi.org/10.1007/s00122-020-03601-4
  9. 9. Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey M-D, et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants. 2018;4(1):23-9. https://doi.org/10.1038/s41477-017-0083-8
  10. 10. Bhatta M, Sandro P, Smith MR, Delaney O, Voss-Fels KP, Gutierrez L, et al. Need for speed: manipulating plant growth to accelerate breeding cycles. Current Opinion in Plant Biology. 2021;60:101986. https://doi.org/10.1016/j.pbi.2020.101986
  11. 11. O'Connor D, Wright G, Dieters M, George D, Hunter M, Tatnell J, et al. Development and application of speed breeding technologies in a commercial peanut breeding program. Peanut Science. 2013;40(2):107-14. https://doi.org/10.3146/PS12-12.1
  12. 12. Pawar P, Talekar N, Kumar A, Salunkhe H. Development and application of speed breeding technologies in groundnut (Arachis hypogaea L.): An advance approach. International Journal of Environment and Climate Change. 2023;13(9):1-13.
  13. 13. Luis JM, Ozias-Akins P, Holbrook CC, Kemerait J, Robert C, Snider JL, et al. Phenotyping peanut genotypes for drought tolerance. Peanut Science. 2016. https://doi.org/10.3146/PS15-5.1
  14. 14. Patrick A, Pelham S, Culbreath A, Holbrook CC, De Godoy IJ, Li C. High throughput phenotyping of tomato spot wilt disease in peanuts using unmanned aerial systems and multispectral imaging. IEEE Instrumentation & Measurement Magazine. 2017;20(3):4-12.
  15. 15. Sarkar S. Development of high-throughput phenotyping methods and evaluation of morphological and physiological characteristics of peanut in a sub-humid environment. 2021. http://hdl.handle.net/10919/111060
  16. 16. Chapu I, Okello DK, Okello RCO, Odong TL, Sarkar S, Balota M. Exploration of alternative approaches to phenotyping of late leaf spot and groundnut rosette virus disease for groundnut breeding. Frontiers in Plant Science. 2022;13:912332. https://doi.org/10.3389/fpls.2022.912332
  17. 17. Deshmukh DB, Variath MT, Patne N, Kona P, Marathi B, Pasupuleti J. Inheritance of oleic acid trait and high throughput non-destructive phenotyping for nutritional traits in groundnut kernels. Indian Journal of Genetics and Plant Breeding. 2021;81(04):72-80. https://doi.org/10.31742/IJGPB.81.4.9
  18. 18. Balota M, Sarkar S, Bennett RS, Burow MD. Phenotyping peanut drought stress with aerial remote-sensing and crop index data. Agriculture. 2024;14(4):565. https://doi.org/10.3390/agriculture14040565
  19. 19. Jewan SYY, Singh A, Billa L, Sparkes D, Murchie E, Gautam D, et al. Can multi-temporal vegetation indices and machine learning algorithms be used for estimation of groundnut canopy state variables? Horticulturae. 2024;10(7):748. https://doi.org/10.3390/horticulturae10070748
  20. 20. Conejo-Rodríguez DF, Gonzalez-Guzman JJ, Ramirez-Gil JG, Wenzl P, Urban MO. Digital descriptors sharpen classical descriptors, for improving genebank accession management: A case study on Arachis spp. and Phaseolus spp. Plos One. 2024;19(5):e0302158. https://doi.org/10.1371/journal.pone.0302158
  21. 21. Manley A, Ravelombola W, Cason J, Bennett B, Pham H, Kimura E, et al. Use of unmanned aerial system (UAS) phenotyping to predict pod and seed yield in organic peanuts. American Journal of Plant Sciences. 2023;14(3):415-26. https://doi.org/10.4236/ajps.2023.143027
  22. 22. Pandey MK, Pandey AK, Kumar R, Nwosu CV, Guo B, Wright GC, et al. Translational genomics for achieving higher genetic gains in groundnut. Theoretical and Applied Genetics. 2020;133:1679-702. https://doi.org/10.1007/s00122-020-03592-2
  23. 23. Kassie FC, Nguepjop JR, Ngalle HB, Assaha DV, Gessese MK, Abtew WG, et al. An overview of mapping quantitative trait loci in peanut (Arachis hypogaea L.). Genes. 2023;14(6):1176. https://doi.org/10.3390/genes14061176
  24. 24. Pandey MK, Gangurde SS, Shasidhar Y, Sharma V, Kale SM, Khan AW, et al. High-throughput diagnostic markers for foliar fungal disease resistance and high oleic acid content in groundnut. BMC Plant Biology. 2024;24(1):262. https://doi.org/10.1186/s12870-024-04987-9
  25. 25. Conde S, Rami J-F, Okello DK, Sambou A, Muitia A, Oteng-Frimpong R, et al. The groundnut improvement network for Africa (GINA) germplasm collection: A unique genetic resource for breeding and gene discovery. G3: Genes, Genomes, Genetics. 2024;14(1).
  26. 26. Bangaru K, Mathew A, Bagudam R, Wankhade AP, Purohit A, Yohane EN, et al. Next-generation crop breeding approaches for improving disease resistance in groundnut (Arachis hypogaea L.). Diseases in legume crops: Next generation breeding approaches for resistant legume crops: Springer. 2023:195-232. https://doi.org/10.1007/978-981-99-3358-7_9
  27. 27. Parmar S, Deshmukh DB, Kumar R, Manohar SS, Joshi P, Sharma V, et al. Single seed-based high-throughput genotyping and rapid generation advancement for accelerated groundnut genetics and breeding research. Agronomy. 2021;11(6):1226. https://doi.org/10.3390/agronomy11061226
  28. 28. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, cell & environment. 2010;33(4):453-67. https://doi.org/10.1111/j.1365-3040.2009.02041.x
  29. 29. Salazar-Licea L, Mateva KI, Gao X, Azman Halimi R andrés-Hernández L, Chai HH, et al. The bambara groundnut genome: From the crop to the genome: The progress and constraints of genome-related studies in bambara groundnut. Underutilised crop genomes: Springer. 2022:189-215. https://doi.org/10.1007/978-3-031-00848-1_11
  30. 30. Thoppurathu FJ, Ghorbanzadeh Z, Vala AK, Hamid R, Joshi M. Unravelling the treasure trove of drought-responsive genes in wild-type peanut through transcriptomics and physiological analyses of root. Functional & Integrative Genomics. 2022;22(2):215-33. https://doi.org/10.1007/s10142-022-00833-z
  31. 31. Carmo LS, Martins AC, Martins CC, Passos MA, Silva LP, Araujo AC, et al. Comparative proteomics and gene expression analysis in Arachis duranensis reveal stress response proteins associated to drought tolerance. Journal of Proteomics. 2019;192:299-310. https://doi.org/10.1016/j.jprot.2018.09.011
  32. 32. Wu Y, Sun Z, Qi F, Tian M, Wang J, Zhao R, et al. Comparative transcriptomics analysis of developing peanut (Arachis hypogaea L.) pods reveals candidate genes affecting peanut seed size. Frontiers in Plant Science. 2022;13:958808. https://doi.org/10.3389/fpls.2022.958808
  33. 33. Khan F, Chai HH, Ajmera I, Hodgman C, Mayes S, Lu C. A transcriptomic comparison of two bambara groundnut landraces under dehydration stress. Genes. 2017;8(4):121. https://doi.org/10.3390/genes8040121
  34. 34. Tatmiya RN, Padhiyar SM, Chandramohan S, Bera SK, Bhatt SB, Iquebal MA, et al. Comparative transcriptome profiling of resistant and susceptible groundnut (Arachis hypogaea) genotypes in response to stem rot infection caused by Sclerotium rolfsii. Plant Pathology. https://doi.org/10.1111/ppa.13987
  35. 35. Joshi MK, Marviya GV, Jacob F, Kandoliya UK, Pandya PM, Vala AG. System-wide analysis of groundnut's salinity resilience: Integrating plant-cell interactions with environmental stress dynamics through cutting-edge transcriptomics. Journal of Biotechnology. 2024. https://doi.org/10.1016/j.jbiotec.2024.07.023
  36. 36. Wang M, Zhu L, Zhang C, Zhou H, Tang Y, Cao S, et al. Transcriptomic–proteomic analysis revealed the regulatory mechanism of peanut in response to Fusarium oxysporum. International Journal of Molecular Sciences. 2024;25(1):619. https://doi.org/10.3390/ijms25010619
  37. 37. Tien NQD, Kha H, Loc NH. Transcriptome assembly, gene expression and SSR marker analysis in drought-tolerant peanut cultivar L14. 2024. https://doi.org/10.21203/rs.3.rs-4861859/v1
  38. 38. Wang X, Zhao Z, Li H, Wei Y, Hu J, Yang H, et al. The growth-promoting and disease-suppressing mechanisms of Trichoderma inoculation on peanut seedlings. Frontiers in Plant Science. 2024;15:1414193. https://doi.org/10.3389/fpls.2024.1414193
  39. 39. Varshney RK, Dubey A. Novel genomic tools and modern genetic and breeding approaches for crop improvement. Journal of Plant Biochemistry and Biotechnology. 2009;18:127-38. https://doi.org/10.1007/BF03263311
  40. 40. Janila P, Pandey MK, Shasidhar Y, Variath MT, Sriswathi M, Khera P, et al. Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Science. 2016;242:203-13. https://doi.org/10.1016/j.plantsci.2015.08.013
  41. 41. Tang Y, Qiu X, Hu C, Li J, Wu L, Wang W, et al. Breeding of a new variety of peanut with high-oleic-acid content and high-yield by marker-assisted backcrossing. Molecular Breeding. 2022;42(7):42. https://doi.org/10.1007/s11032-022-01313-9
  42. 42. Bera SK, Kamdar JH, Kasundra SV, Dash P, Maurya AK, Jasani MD, et al. Improving oil quality by altering levels of fatty acids through marker-assisted selection of ahfad2 alleles in peanut (Arachis hypogaea L.). Euphytica. 2018;214:1-15. https://doi.org/10.1007/s10681-018-2241-0
  43. 43. Nawade B, Mishra GP, Radhakrishnan T, Sangh C, Dobariya J, Kundu R. Development of high oleic peanut lines through marker-assisted introgression of mutant ahFAD2 alleles and its fatty acid profiles under open-field and controlled conditions. 3 Biotech. 2019;9:1-16. https://doi.org/10.1007/s13205-019-1774-9
  44. 44. Zhuang W, Chen H, Yang M, Wang J, Pandey MK, Zhang C, et al. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics. 2019;51(5):865-76. https://doi.org/10.1038/s41588-019-0402-2
  45. 45. Shasidhar Y, Variath MT, Vishwakarma MK, Manohar SS, Gangurde SS, Sriswathi M, et al. Improvement of three popular Indian groundnut varieties for foliar disease resistance and high oleic acid using SSR markers and SNP array in marker-assisted backcrossing. The Crop Journal. 2020;8(1):1-15. https://doi.org/10.1016/j.cj.2019.07.001
  46. 46. Rajarathinam P, Palanisamy G, P R, Narayana M, Alagirisamy M. Marker assisted backcross to introgress late leaf spot and rust resistance in groundnut (Arachis hypogaea L.). Molecular Biology Reports. 2023;50(3):2411-19. https://doi.org/10.1007/s11033-022-08234-y
  47. 47. Pandey MK, Gangurde SS, Shasidhar Y, Sharma V, Kale SM, Khan AW, et al. Diagnostic markers for foliar fungal disease resistance and high oleic acid in groundnut. 2023. https://doi.org/10.21203/rs.3.rs-3423370/v1
  48. 48. Moretzsohn MdC, Santos JFd, Moraes ARA, Custódio AR, Michelotto MD, Mahrajan N, et al. Marker-assisted introgression of wild chromosome segments conferring resistance to fungal foliar diseases into peanut (Arachis hypogaea L.). Frontiers in Plant Science. 2023;14:1139361. https://doi.org/10.3389/fpls.2023.1139361
  49. 49. Yeri SB, Bhat RS. Development of late leaf spot and rust resistant backcross lines in JL 24 variety of groundnut (Arachis hypogaea L.). Electronic Journal of Plant Breeding. 2016;7(1):37-41. https://doi.org/10.5958/0975-928X.2016.00005.3
  50. 50. Bera SK, Kamdar JH, Kasundra SV, Patel SV, Jasani MD, Maurya A, et al. Steady expression of high oleic acid in peanut bred by marker-assisted backcrossing for fatty acid desaturase mutant alleles and its effect on seed germination along with other seedling traits. PloS One. 2019;14(12):e0226252. https://doi.org/10.1371/journal.pone.0226252
  51. 51. Vargheese RL, Saravanan S, Hepziba SJ, Kumari SMP, Pushpam AK, Kanagarajan S, et al. Marker-assisted introgression to improve the oleic acid content in the TMV 7 groundnut (Arachis hypogaea L.) variety suitable for the oil industry. BMC Plant Biology. 2024;24(1):733. https://doi.org/10.1186/s12870-024-05387-9
  52. 52. Krishnappa G, Savadi S, Tyagi BS, Singh SK, Mamrutha HM, Kumar S, et al. Integrated genomic selection for rapid improvement of crops. Genomics. 2021;113(3):1070-86. https://doi.org/10.1016/j.ygeno.2021.02.007
  53. 53. Đorđević V, Ćeran M, Miladinović J, Balešević-Tubić S, Petrović K, Miladinov Z, et al. Exploring the performance of genomic prediction models for soybean yield using different validation approaches. Molecular Breeding. 2019;39:1-15. https://doi.org/10.1007/s11032-019-0983-6
  54. 54. Abady S, Shimelis H, Janila P, Wankhade A, Chimote VP. Genome-wide association analysis for drought tolerance and component traits in groundnut gene pool. Euphytica. 2024;220(5):76. https://doi.org/10.1007/s10681-024-03324-3
  55. 55. Chen W, Yue Y, Chen C, Yang J, Chen Y, Zhang H. Genome-wide association studies revealed genetic loci and candidate genes for pod-related traits in peanut. Plant Molecular Biology Reporter. 2024. https://doi.org/10.1007/s11105-024-01507-9
  56. 56. Guo M, Deng L, Gu J, Miao J, Yin J, Li Y, et al. Genome-wide association study and development of molecular markers for yield and quality traits in peanut (Arachis hypogaea L.). BMC Plant Biology. 2024;24(1):244. https://doi.org/10.1186/s12870-024-04937-5
  57. 57. Achola E, Wasswa P, Fonceka D, Clevenger JP, Bajaj P, Ozias-Akins P, et al. Genome-wide association studies reveal novel loci for resistance to groundnut rosette disease in the African core groundnut collection. Theoretical and Applied Genetics. 2023;136(3):35. https://doi.org/10.1007/s00122-023-04259-4
  58. 58. Oteng-Frimpong R, Karikari B, Sie EK, Kassim YB, Puozaa DK, Rasheed MA, et al. Multi-locus genome-wide association studies reveal genomic regions and putative candidate genes associated with leaf spot diseases in African groundnut (Arachis hypogaea L.) germplasm. Frontiers in Plant Science. 2023;13:1076744. https://doi.org/10.3389/fpls.2022.1076744
  59. 59. Odesola KA, Olawuyi OJ, Paliwal R, Oyatomi OA, Abberton MT. Genome-wide association analysis of phenotypic traits in Bambara groundnut under drought-stressed and non-stressed conditions based on DArTseq SNP. Frontiers in Plant Science. 2023;14:1104417. https://doi.org/10.3389/fpls.2023.1104417
  60. 60. Li L, Cui S, Dang P, Yang X, Wei X, Chen K, et al. GWAS and bulked segregant analysis reveal the Loci controlling growth habit-related traits in cultivated Peanut (Arachis hypogaea L.). BMC genomics. 2022;23(1):403. https://doi.org/10.1186/s12864-022-08640-3
  61. 61. Yusuf Z, Zeleke H, Mohammed W, Hussein S, Hugo A. Estimate of genetic variability parameters among groundnut (Arachis hypogaea L.) genotypes in Ethiopia. Int J Plant Breed Crop Sci. 2017;4(2):225-30.
  62. 62. Kulthe MP, Kothekar VS. Effects of sodium azide on yield parameters of chickpea (Cicer arietinum L.). Journal of Phytology. 2011;3(1).
  63. 63. Alemu GT, Berhanie Ayele Z, Abelieneh Berhanu A. Effects of land fragmentation on productivity in Northwestern Ethiopia. Advances in Agriculture. 2017;2017(1):4509605. https://doi.org/10.1155/2017/4509605
  64. 64. Wanga MA, Ithete RN, Hukununa R-mK, Kangumba A, Hangula MN, Hasheela EB, et al. Optimum gamma irradiation doses for mutagenesis in Bambara groundnut (Vigna subterranean L.) genotypes. Reproduction and Breeding. 2024;4(2):88-94. https://doi.org/10.1016/j.repbre.2024.01.002
  65. 65. Badigannavar AM, Mondal S, Bhad PG. A new gamma ray-induced mutant variety of groundnut for cultivation in Gujarat and Maharashtra. BARC newsletter. 2024.
  66. 66. Mythili S, Manivannan N, Kalaimagal T, Paranidharan V, Janaki P. Identification of an effective genotyping assay for marker assisted selection of high oleic acid content trait in groundnut (Arachis hypogea L.). Electronic Journal of Plant Breeding. 2023;14(4):1285-92. https://doi.org/10.37992/2023.1404.147
  67. 67. Salzberg SL. Next-generation genome annotation: we still struggle to get it right. Genome biology. 2019;20(1):92. https://doi.org/10.1186/s13059-019-1715-2
  68. 68. Zhou X, Xia Y, Ren X, Chen Y, Huang L, Huang S, et al. Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genomics. 2014;15:1-14. https://doi.org/10.1186/1471-2164-15-351
  69. 69. Prasad K, Gadeela H, Bommineni PR, Reddy PS, Tyagi W, Yogendra K. CRISPR/Cas9-mediated mutagenesis of phytoene desaturase in pigeonpea and groundnut. Functional & Integrative Genomics. 2024;24(2):57. https://doi.org/10.1007/s10142-024-01336-9
  70. 70. Han HW, Yu ST, Wang ZW, Yang Z, Jiang CJ, Wang XZ, et al. In planta genetic transformation to produce CRISPRed high-oleic peanut. Plant Growth Regulation. 2023;101(2):443-51. https://doi.org/10.1007/s10725-023-01031-y
  71. 71. Neelakandan AK, Wright DA, Traore SM, Ma X, Subedi B, Veeramasu S, et al. Application of CRISPR/Cas9 system for efficient gene editing in peanut. Plants. 2022;11(10):1361.
  72. 72. Neelakandan AK, Wright DA, Traore SM, Chen X, Spalding MH, He G. CRISPR/Cas9 based site-specific modification of FAD2 cis-regulatory motifs in peanut (Arachis hypogaea L). Frontiers in Genetics. 2022;13:849961. https://doi.org/10.3389/fgene.2022.849961
  73. 73. Sarvamangala C, Gowda M, Varshney R. Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field crops research. 2011;122(1):49-59. https://doi.org/10.1016/j.fcr.2011.02.010
  74. 74. Huang L, He H, Chen W, Ren X, Chen Y, Zhou X, et al. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theoretical and Applied Genetics. 2015;128:1103-15. https://doi.org/10.1007/s00122-015-2493-1
  75. 75. Shasidhar Y, Vishwakarma MK, Pandey MK, Janila P, Variath MT, Manohar SS, et al. Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut (Arachis hypogaea L.). Frontiers in Plant Science. 2017;8:794. https://doi.org/10.3389/fpls.2017.00794
  76. 76. Liu N, Guo J, Zhou X, Wu B, Huang L, Luo H, et al. High-resolution mapping of a major and consensus quantitative trait locus for oil content to a~ 0.8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Theoretical and Applied Genetics. 2020;133:37-49. https://doi.org/10.1007/s00122-019-03438-6
  77. 77. Sun Z, Qi F, Liu H, Qin L, Xu J, Shi L, et al. QTL Mapping of quality related traits in peanut using whole-genome resequencing. 2021. https://doi.org/10.21203/rs.3.rs-138961/v1
  78. 78. Guo J, Liu N, Li W, Wu B, Chen H, Huang L, et al. Identification of two major loci and linked marker for oil content in peanut (Arachis hypogaea L.). Euphytica. 2021;217:1-11. https://doi.org/10.1007/s10681-021-02765-4
  79. 79. Sun Z, Qi F, Liu H, Qin L, Xu J, Shi L, et al. QTL mapping of quality traits in peanut using whole-genome resequencing. The Crop Journal. 2022;10(1):177-84. https://doi.org/10.1016/j.cj.2021.04.008
  80. 80. Liu N, Luo H, Huang L, Zhou X, Chen W, Wu B, et al. High-resolution mapping through whole-genome resequencing identifies two novel QTLs controlling oil content in peanut. Journal of Integrative Agriculture. 2024. https://doi.org/10.1016/j.jia.2024.08.028
  81. 81. Joshi P, Soni P, Sharma V, Manohar SS, Kumar S, Sharma S, et al. Genome-wide mapping of quantitative trait loci for yield-attributing traits of peanut. Genes. 2024;15(2):140. https://doi.org/10.3390/genes15020140
  82. 82. Hu P, Zhang J, Song Y, Zhao X, Jin X, Su Q, et al. Identification of putative quantitative trait loci for improved seed oil quality in peanuts. Genes. 2024;15(1):75. https://doi.org/10.3390/genes15010075
  83. 83. Hake A, Shirasawa K, Yadawad A, Nayak S, Mondal S, Badigannavar A, et al. Identification of transposable element markers associated with yield and quality traits from an association panel of independent mutants in peanut (Arachis hypogaea L.). Euphytica. 2017;213:1-13. https://doi.org/10.1007/s10681-017-2070-6
  84. 84. Khedikar Y, Gowda M, Sarvamangala C, Patgar K, Upadhyaya H, Varshney R. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theoretical and Applied Genetics. 2010;121:971-84. https://doi.org/10.1007/s00122-010-1366-x
  85. 85. Sujay V, Gowda M, Pandey M, Bhat R, Khedikar Y, Nadaf H, et al. Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Molecular Breeding. 2012;30:773-88. https://doi.org/10.1007/s11032-011-9661-z
  86. 86. Kolekar R, Sujay V, Shirasawa K, Sukruth M, Khedikar Y, Gowda M, et al. QTL mapping for late leaf spot and rust resistance using an improved genetic map and extensive phenotypic data on a recombinant inbred line population in peanut (Arachis hypogaea L.). Euphytica. 2016;209:147-56. https://doi.org/10.1007/s10681-016-1651-0
  87. 87. Pandey MK, Khan AW, Singh VK, Vishwakarma MK, Shasidhar Y, Kumar V, et al. QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnology Journal. 2017;15(8):927-41. https://doi.org/10.1111/pbi.12686
  88. 88. Ahmad S, Nawade B, Sangh C, Mishra GP, Bosamia TC, Kumar N, et al. Identification of novel QTLs for late leaf spot resistance and validation of a major rust QTL in peanut (Arachis hypogaea L.). 3 Biotech. 2020;10:1-13. https://doi.org/10.1007/s13205-020-02446-4
  89. 89. Wang H, Pandey MK, Qiao L, Qin H, Culbreath AK, He G, et al. Genetic mapping and quantitative trait loci analysis for disease resistance using F2 and F5 generation-based genetic maps derived from ‘Tifrunner’בGT-C20’in peanut. The Plant Genome. 2013;6(3). https://doi.org/10.3835/plantgenome2013.05.0018
  90. 90. Tseng Y-C, Tillman BL, Peng Z, Wang J. Identification of major QTLs underlying tomato spotted wilt virus resistance in peanut cultivar Florida-EP TM ‘113’. BMC genetics. 2016;17:1-14. https://doi.org/10.1186/s12863-016-0435-9
  91. 91. Agarwal G, Clevenger J, Pandey MK, Wang H, Shasidhar Y, Chu Y, et al. High-density genetic map using whole-genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut. Plant Biotechnology Journal. 2018;16(11):1954-67. https://doi.org/10.1111/pbi.12930
  92. 92. Agarwal G, Clevenger J, Kale SM, Wang H, Pandey MK, Choudhary D, et al. A recombination bin-map identified a major QTL for resistance to Tomato Spotted Wilt Virus in peanut (Arachis hypogaea). Scientific Reports. 2019;9(1):18246. https://doi.org/10.1038/s41598-019-54747-1
  93. 93. Dodia SM, Joshi B, Gangurde SS, Thirumalaisamy PP, Mishra GP, Narandrakumar D, et al. Genotyping-by-sequencing based genetic mapping reveals large number of epistatic interactions for stem rot resistance in groundnut. Theoretical and Applied Genetics. 2019;132:1001-16. https://doi.org/10.1007/s00122-018-3255-7
  94. 94. Han S, Yuan M, Clevenger JP, Li C, Hagan A, Zhang X, et al. A SNP-based linkage map revealed QTLs for resistance to early and late leaf spot diseases in peanut (Arachis hypogaea L.). Frontiers in Plant Science. 2018;9:1012. https://doi.org/10.3389/fpls.2018.01012
  95. 95. Chu Y, Chee P, Culbreath A, Isleib TG, Holbrook CC, Ozias-Akins P. Major QTLs for resistance to early and late leaf spot diseases are identified on chromosomes 3 and 5 in peanut (Arachis hypogaea). Frontiers in Plant Science. 2019;10:883. https://doi.org/10.3389/fpls.2019.00883
  96. 96. Clevenger J, Chu Y, Chavarro C, Botton S, Culbreath A, Isleib TG, et al. Mapping late leaf spot resistance in peanut (Arachis hypogaea) using QTL-seq reveals markers for marker-assisted selection. Frontiers in Plant Science. 2018;9:83. https://doi.org/10.3389/fpls.2018.00083
  97. 97. Luo H, Pandey MK, Khan AW, Guo J, Wu B, Cai Y, et al. Discovery of genomic regions and candidate genes controlling shelling percentage using QTL-seq approach in cultivated peanut (Arachis hypogaea L.). Plant Biotechnology Journal. 2019;17(7):1248-60. https://doi.org/10.1111/pbi.13050
  98. 98. Mondal S, Badigannavar AM. Identification of major consensus QTLs for seed size and minor QTLs for pod traits in cultivated groundnut (Arachis hypogaea L.). 3 Biotech. 2019;9(9):347. https://doi.org/10.1007/s13205-019-1881-7
  99. 99. Chavarro C, Chu Y, Holbrook C, Isleib T, Bertioli D, Hovav R, et al. Pod and seed trait QTL identification to assist breeding for peanut market preferences. G3: Genes, Genomes, Genetics. 2020;10(7):2297-315. https://doi.org/10.1534/g3.120.401147
  100. 100. Chu Y, Chee P, Isleib TG, Holbrook CC, Ozias-Akins P. Major seed size QTL on chromosome A05 of peanut (Arachis hypogaea) is conserved in the US mini core germplasm collection. Molecular Breeding. 2020;40:1-16. https://doi.org/10.1007/s11032-019-1082-4
  101. 101. Pandey MK, Gangurde SS, Sharma V, Pattanashetti SK, Naidu GK, Faye I, et al. Improved genetic map identified major QTLs for drought tolerance-and iron deficiency tolerance-related traits in groundnut. Genes. 2020;12(1):37. https://doi.org/10.3390/genes12010037
  102. 102. Jin G, Liu N, Yu B, Jiang Y, Luo H, Huang L, et al. Identification and pyramiding major QTL loci for simultaneously enhancing Aflatoxin resistance and yield components in peanut. Genes. 2023;14(3):625. https://doi.org/10.3390/genes14030625
  103. 103. Yu B, Huai D, Huang L, Kang Y, Ren X, Chen Y, et al. Identification of genomic regions and diagnostic markers for resistance to aflatoxin contamination in peanut (Arachis hypogaea L.). BMC genetics. 2019;20:1-13. https://doi.org/10.1186/s12863-019-0734-z
  104. 104. Khan SA, Chen H, Deng Y, Chen Y, Zhang C, Cai T, et al. High-density SNP map facilitates fine mapping of QTLs and candidate genes discovery for Aspergillus flavus resistance in peanut (Arachis hypogaea). Theoretical and Applied Genetics. 2020;133:2239-57. https://doi.org/10.1007/s00122-020-03594-0
  105. 105. Jiang Y, Luo H, Yu B, Ding Y, Kang Y, Huang L, et al. High-density genetic linkage map construction using whole-genome resequencing for mapping QTLs of resistance to Aspergillus flavus infection in peanut. Frontiers in Plant Science. 2021;12:745408. https://doi.org/10.3389/fpls.2021.745408
  106. 106. Yu B, Liu N, Huang L, Luo H, Zhou X, Lei Y, et al. Identification and application of a candidate gene AhAftr1 for aflatoxin production resistance in peanut seed (Arachis hypogaea L.). Journal of Advanced Research. 2024;62:15-26. https://doi.org/10.1016/j.jare.2023.09.014

Downloads

Download data is not yet available.