Research Articles
Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture
Multivariate analysis of soybean genotypes: Uncovering agro-morphological insights
Department of Genetics and Plant Breeding, Jawaharlal Nehru Krishi Vishwa vidyalaya, Jabalpur 482 004, India
Department of Genetics and Plant Breeding, Jawaharlal Nehru Krishi Vishwa vidyalaya, Jabalpur 482 004, India
Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
Department of Genetics and Plant Breeding, Jawaharlal Nehru Krishi Vishwa vidyalaya, Jabalpur 482 004, India
Department of Genetics and Plant Breeding, Jawaharlal Nehru Krishi Vishwa vidyalaya, Jabalpur 482 004, India
Abstract
Soybean [Glycine max (L.) Merrill] is a vital legume crop known for its high protein and oil content, playing a crucial role in global food security and industrial applications. Its adaptability to diverse environments and nutritional importance underscores the need for improving genetic diversity to enhance yield potential and stress resilience. This study analyzed genetic diversity among fifty soybean genotypes using cluster analysis and Principal Component Analysis (PCA) based on eleven morphological and quantitative traits. The genotypes were evaluated at the Soybean Breeding Farm, Jawaharlal Nehru Krishi Vishwa Vidyalaya (JNKVV), Jabalpur, in a Randomized Complete Block Design with three replications over three seasons (Kharif 2019, 2020, and summer 2021) under rainfed and irrigated conditions. Cluster analysis using the D² method revealed distinct genetic groupings, with genotypes forming 10 clusters in environment E1, where Cluster I comprised 24 genotypes, and Cluster V included 9 genotypes; similar patterns were observed in environments E2, E3, and pooled data across years. PCA highlighted the number of pods per plant, number of seeds per plant, days to flower initiation, and days to maturity as key traits driving genetic variability. Traits such as the number of primary branches per plant, number of pods per plant, and number of seeds per plant significantly influenced genetic variability. Promising genotypes, including JS 22-78, JS 22-66, JS 22-88, AGS 31, JS 22-77, JS 22-90, JS 22-106, JS 22-69, JS 22-10, JS 22-84, JS 22-91, JS 22-92, and AGS 48, exhibited high genetic diversity, demonstrating the utility of cluster analysis and PCA in facilitating the selection of superior genotypes from diverse germplasm pools.
References
- 1. Hunje R, Shinde P. Influence of seed quality upgrading by processing machines in soybean var. DSb-21. Legume Res. 2023;46(6):752-6.
- 2. Nayana RS, Fakrudin B. Genetic variability, heritability and correlation studies in soybean (Glycine max). Indian J. Agric. Sci. 2020;90(4):704-07. https://doi.org/10.56093/ijas.v90i4.102206
- 3. Yan C, Song S, Wang W, Wang C, Li H, Wang F, et al. Screening diverse soybean genotypes for drought tolerance by membership function value based on multiple traits and drought-tolerant coefficient of yield. BMC Plant Biol. 2020;20:321. https://doi.org/10.1186/s12870-020-02519-9
- 4. Yang Z, Luo C, Pei X, Wang S, Huang Y, Li J, et al. Soy MD: A platform combining multi-omics data with various tools for soybean research and breeding. Nucleic Acids Res. 2024;52(D1):D1639-D16550. https://doi.org/10.1093/nar/gkad786
- 5. Kim IS, Kim CH, Yang WS. Physiologically active molecules and functional properties of soybeans in human health-A current perspective. Int. J. Mol. Sci. 2021;22(8):40-54. https://doi.org/10.3390/ijms22084054
- 6. Ramlal A, Mehta S, Nautiyal A, Baweja P, Shivam, Sharma D, et al. Androgenesis in Soybean (Glycine max (L.) Merr.): A critical revisit. In Vitro Cell. Dev. Biol. Plant. 2024;60(1):1-5. https://doi.org/10.1007/s11627-023-10402-z
- 7. Jain RK, Joshi A, Chaudhary HR, Dashora A, Khatik CL. Study on genetic variability, heritability and genetic advance in soybean [Glycine max (L.) Merrill]. Res. Int. J. 2018;41(4):532-6. https://doi.org/10.18805/LR-3874
- 8. Song H, Taylor DC, Zhang M. Bioengineering of soybean oil and its impact on agronomic traits. J. Mol. Sci. 2023; 24(3):2256. https://doi.org/10.3390/ijms24032256
- 9. Vijayakumar E, Sudhagar R, Vanniarajan C, Ramalingam J, Allan V, Senthil N. Estimating the breeding potency of a soybean core set. Int. J. Agric. Biol. 2022;27(3):184-192. https://doi.org/10.17957/IJAB/15.1915
- 10. Santeramo FG, Searle S. Linking soy oil demand from the US renewable fuel standard to palm oil expansion through an analysis on vegetable oil price elasticities. Energy Policy. 2019; 127:19-23. https://doi.org/10.1016/j.enpol.2018.11.054
- 11. Kujane K, Sedibe MM, Mofokeng A. Genetic diversity analysis of soybean ('Glycine max (L.)'Merr.) genotypes making use of SSR markers. Aust. J. Crop Sci. 2019;13(7):1113-9. https://doi.org/10.21475/ajcs.19.13.07.p1638
- 12. Kumar C, Sahu GS, Chandrakant K. Assessment of genetic divergence in chilli germplasm (Capsicum annuum L.). Madras Agric. J. 2023;110(1):1. https://doi.org/10.29321/MAJ.10.200695
- 13. Mahesh M, Sudhanshu J, Bhadoria VS. Genetic divergence studies in soybean (Glycine max L. Merrill). Int. J. Agric. Sci. 2017; 9(19):4196-7.
- 14. Mishra S, Jha A, Panchshwar DK, Shrivastava AN. Study of genetic divergence in advance breeding lines of soybean [Glycine max (L.) Merrill] for yield attributing traits. Int. J. Bio-Resour. Stress Manag. 2018;9(1):103-7.
- 15. Sivabharathi RC, Muthuswamy A, Anandhi K, Karthiba L. Genetic diversity studies of soybean [Glycine max (L.) Merrill] germplasm accessions using cluster and Principal Component Analysis. Legume Res. 2023;1(6):1-5. https://doi.org/10.18805/LR-5071
- 16. Thorat VV, Borale SU, Shaniware YA, Goykar MB, Girase VS. To study genetic diversity among different traits in soybean [Glycine max (L). Merrill]. Pharma Innov. J. 2023;12(12):1704-9.
- 17. Vianna VF, Unêda-Trevisoli SH, Desidério JA, Santiago SD, Charnai K, Ferreira Júnior JA, et al. The multivariate approach and influence of characters in selecting superior soybean genotypes. Afr. J. Agric. Res. 2013;8(30):4162-9.
- 18. Marconato MB, Pereira EM, Silva FM, Bizari EH, Pinheiro JB, Mauro AO, et al. Genetic divergence in a soybean (Glycine max) diversity panel based on agro-morphological traits. Genet. Mol. Res. 2016;15(4):1-0. https://doi.org/10.4238/gmr15048980
- 19. Mahalanobis PC. A note on the statistical and biometric writings of Karl Pearson. Sankhya. 1936; 2(4):411-22.
- 20. C. R. Rao. Advanced Statistical Methods in Biometric Research. John Wiley and Sons, New York. 1952.
- 21. Banerjee J, Shrivastava MK, Singh Y, Amrate PK. Estimation of genetic divergence and proximate composition in advanced breeding lines of soybean (Glycine max (L.) Merrill). Environ. Ecol. 2023:(3C):1960-8. https://doi.org/10.60151/envec/VYWE5744
- 22. Deep H, Chakraborty I, Arya S, Lamba P, Pahuja SK, Tokas J. Genetic diversity analysis by D2 clustering of fodder yield and its related traits in forage sorghum. Pantnagar J. Res. 2020;18(3):203-208.
- 23. Getnet BE. Genetic variability, heritability and expected genetic advance as indices for selection in soybean [Glycine max (L.) Merrill] varieties. Am. J. Life Sci. 2018;6(4):52-6. https://doi.org/10.11648/j.ajls.20180604.11
- 24. Jain SK, Sharma LD, Gupta KC, Kumar V, Sharma RS. Principal component and genetic diversity analysis for seed yield and its related components in the genotypes of chickpea (Cicer arietinum L.). Legume Res. 2023;46(9):1174-8.
- 25. Jawarkar S, Shrivastava M, Amrate PK, Satpute GK, Khare V. Comprehensive analysis of phenotypic variation and selection strategies for yield-related traits in recombinant inbred lines of soybeans. Electron. J. Plant Breed. 2023;14(4):1337-44. https://doi.org/10.37992/2023.1404.165
- 26. Upadhyay P, Shrivastava MK, Amrate PK, Sharma S, Thakur S, Kumar JA. Assessing genetic diversity of exotic lines of soybean based on D2 and principal component analysis. Pharma Innov. J. 2022;11(5S):89-93.
- 27. Zeba N, Hasan MM, Modak S, Sarkar A, Rahama MA. Genetic diversity of agro-morphogenic traits in soybean (Glycine max L. Merr). Asian J. Biochem. Genet. Mol. Biol. 2022;12(3):37-47. https://doi.org/10.9734/ajbgmb/2022/v12i3265
- 28. Altaf M, Sarwar S, Iqbal J, Rahman S, Mustafa HS, Nazir S, Habib I, Nawaz. Revealing the yield and quality responses of soybean advanced lines under semi-arid conditions. Adv. Life Sci. 2023;10(1):54. https://doi.org/10.62940/als.v10i1.1530
- 29. Amogne A. Genetic variability and association of traits in soybean (Glycine max (L.) Merrill) genotypes in northwestern Ethiopia.[Doctoral dissertation]. 2019.
- 30. Kumawat A, Mishra S, Sen R, Gour L. Genetic divergence analysis of soybean (Glycine Max L.) genotypes using mahalanobis multivariate analysis. Ann. Plant Soil Res. 2024;26(1):172-4. https://doi.org/10.47815/apsr.2024.10348
- 31. Dubey N, Avinashe HA, Shrivastava AN. Principal component analysis in advanced genotypes of soybean [Glycine max (L.) Merrill] over seasons. Plant Arch. 2018;18(1):501-506.
- 32. Dunna DS, Heisnam ND, Thokchom RD, Sinha B, Singh O. Principal component analysis among vegetable soybean genotypes (Glycine max L. Merrill). Environ. Conserv. J. 2023;24(3):79-86. https://doi.org/10.36953/ECJ.14532442
- 33. Manav AR, Kumar K. Principle component analysis of nine morphological trait in five accessions of soyabean [Glysine max.(L.) Merril]. Int. J. Pure Appl. Biosci. Bioscience. 2017;5(6):938-41. https://doi.org/10.18782/2320-7051.6138
- 34. Belayneh DB. Mungbean Vigna radiata (L.) Wilczek varieties evaluation trial based on some selected physiological growth parameters at Hawassa Ethiopia. Adv Crop Sci Tech. 2023;11(8):1-3.
- 35. Mohan S, Sheeba A, Kalaimagal T. Genetic diversity and association studies in greengram [Vigna Radiata (L.) Wilczek]. Legume Res. 2021;44(7):779-84.
- 36. Nasir B, Razzaq H, Sadaqat HA, Wahid MA. Selection of soybeans for adaptation through Principal Component Analysis under different climatic factors at seedling stage. Pak. J. Bot. 2023;55(2):665-78. https://doi.org/10.30848/PJB2023-2(19)
- 37. Saraswat S, Sharma S. Principal Component Analysis of soybean genotypes under post anthesis drought stress. Int. J. Curr. Microbiol. App. Sci. 2021;10(03):129-40.
- 38. Singh PK, Shrestha J. Evaluation of soybean [Glycine max (L.) Merrill] genotypes for agro-morphological traits using multivariate analysis. Nepal. J. Agric. Sci. 2019;18:100-7.
- 39. Singh PK, Shrestha J, Kushwaha UK. Multivariate analysis of soybean genotypes. J. Agric. Nat. Resour. 2020;3(1):69-76. https://doi.org/10.3126/janr.v3i1.27092
- 40. Yirga M, Sileshi Y, Tesfaye A, Hailemariam M. Genetic variability and association of traits in soybean (Glycine max (L.)) Genotypes in Ethiopia. Ethiop. J. Crop Sci. 2022;9(2):49-74. https://doi.org/10.11648/j.jps.20210906.17
Downloads
Download data is not yet available.