Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Yeast as a potential bio-control agent for managing postharvest diseases of fruits

DOI
https://doi.org/10.14719/pst.8682
Submitted
4 April 2025
Published
22-07-2025 — Updated on 01-08-2025
Versions

Abstract

Phytopathogen-induced postharvest fruit diseases can result in losses of up to 50 % of the world’s total production. The impact on the use of conventional synthetic fungicides on human health and eco-toxicological risk has raised concern all over the world and strategies have been made to limit their use in disease management. The development of various antagonistic microbes as potential bio-control agents has increased due to the need for sustainable agriculture and climate change arising globally. Yeast, a unicellular fungus, is a good substitute for synthetic chemicals and it could grow in various ecological niches. Commercially, yeast and its products are used in the food industry, medicine, and biotechnological research, but it can also provide a range of bio-controlling and growth-promoting properties for plants. Yeast is harnessed as a biocontrol agent as they are known for host surface colonization, host resistance induction, production of antifungal compounds, no production of toxic antibiotics as other antagonists and is considered safe for the final food product. Hence, they are extensively harnessed as a potential antagonist in efficiently managing the post-harvest diseases of fruit throughout the world. Their application to fruit postharvest diseases enables a sustainable substitute for synthetic fungicides, enhancing food safety and prolonging shelf life. This review article focuses on the mode of action and their role in post-harvest protection of fruits.

References

  1. 1. Semwal P, Painuli S, Jamloki A, Rauf A, Rahman MM, Olatunde A, et al. Himalayan wild fruits as a strong source of nutraceuticals, therapeutics, food and nutrition security. Food Reviews International. 2023;39(9):6500-36. https://doi.org/10.1080/87559129.2022.2121407
  2. 2. Jaglan P, Buttar HS, Al-bawareed OA, Chibisov S. Potential health benefits of selected fruits: Apples, blueberries, grapes, guavas, mangos, pomegranates, and tomatoes. In: Functional foods and nutraceuticals in metabolic and non-communicable diseases. Academic Press; 2022. p. 359-70. https://doi.org/10.1016/B978-0-12-819815-5.00026-4
  3. 3. Thiviya P, Gamage A, Kapilan R, Merah O, Madhujith T. Single cell protein production using different fruit waste: a review. Separations. 2022;9(7):178. https://doi.org/10.3390/separations9070178
  4. 4. Gunders D, Bloom J. Wasted: How America is losing up to 40 percent of its food from farm to fork to landfill. Science of Food. 2018;2:14. https://doi.org/10.1038/s41538-018-0021-9
  5. 5. Godana EA, Yang Q, Zhang X, Zhao L, Wang K, Dhanasekaran S, et al. Biotechnological and biocontrol approaches for mitigating postharvest diseases caused by fungal pathogens and their mycotoxins in fruits: A review. Journal of Agricultural and Food Chemistry. 2023;71(46):17584-96. https://doi.org/10.1021/acs.jafc.3c06448
  6. 6. Thompson AK. Fruit and vegetables: harvesting, handling and storage. John Wiley & Sons; 2008.
  7. 7. Dukare AS, Paul S, Nambi VE, Gupta RK, Singh R, Sharma K, et al. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Critical Reviews in Food Science and Nutrition. 2019;59(9):1498-513. https://doi.org/10.1080/10408398.2017.1417235
  8. 8. Maicas S. The role of yeasts in fermentation processes. Microorganisms. 2020;8(8):1142. https://doi.org/10.3390/microorganisms8081142
  9. 9. Molina-Espeja P. Next generation winemakers: Genetic engineering in Saccharomyces cerevisiae for trendy challenges. Bioengineering. 2020;7(4):128. https://doi.org/10.3390/bioengineering7040128
  10. 10. Kowalska J, Krzyminska J, Tyburski J. Yeasts as a potential biological agent in plant disease protection and yield improvement—A short review. Agriculture. 2022;12(9):1404. https://doi.org/10.3390/agriculture12091404
  11. 11. Thambugala KM, Daranagama DA, Phillips AJ, Kannangara SD, Promputtha I. Fungi vs. fungi in biocontrol: An overview of fungal antagonists applied against fungal plant pathogens. Frontiers in Cellular and Infection Microbiology. 2020;10:604923. https://doi.org/10.3389/fcimb.2020.604923
  12. 12. Macias-Paz IU, Pérez-Hernández S, Tavera-Tapia A, Luna-Arias JP, Guerra-Cárdenas JE, Reyna-Beltrán E. Candida albicans the main opportunistic pathogenic fungus in humans. Revista Argentina de Microbiologia. 2023;55(2):189-98. https://doi.org/10.1016/j.ram.2022.08.003
  13. 13. Hatamzadeh S, Akbari Oghaz N, Rahnama K, Noori F. Comparison of the antifungal activity of chlorine dioxide, peracetic acid and some chemical fungicides in post-harvest management of Penicillium digitatum and Botrytis cinerea infecting sweet orange and strawberry fruits. Agricultural Research. 2024;13(1):72-84. https://doi.org/10.1007/s40003-023-00677-4
  14. 14. Ballester AR, Lafuente MT, González-Candelas L. Spatial study of antioxidant enzymes, peroxidase and phenylalanine ammonia-lyase in the citrus fruit-Penicillium digitatum interaction. Postharvest Biology and Technology. 2006;39(2):115-24. https://doi.org/10.1016/j.postharvbio.2005.10.002
  15. 15. Ghanei Ghooshkhaneh N, Golzarian MR, Mamarabadi M. Detection and classification of citrus green mold caused by Penicillium digitatum using multispectral imaging. Journal of the Science of Food and Agriculture. 2018;98(9):3542-50. https://doi.org/10.1002/jsfa.8864
  16. 16. Patil SR, Parthiban VK, Sekar G, Marimuthu K. Survey, isolation and identification of post harvest Penicillium mould of sweet orange. Journal of Soils and Crops 2017;27:45-9.
  17. 17. Choquer M, Fournier E, Kunz C, Levis C, Pradier JM, Simon A, et al. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiology Letters. 2007;277(1):1-10. https://doi.org/10.1111/j.1574-6968.2007.00930.x
  18. 18. Raynaldo FA, Xu Y, Wang Q, Wu B, Li D. Biological control and other alternatives to chemical fungicides in controlling postharvest disease of fruits caused by Alternaria alternata and Botrytis cinerea. Food Innovation and Advances. 2024;3(2):135-43. https://doi.org/10.48130/fia-0024-0014
  19. 19. Jeevanantham S, Praveen A, Livitha R, Balamurugan K. Post harvest anthracnose of mango caused by Colletotrichum gloeosporioides: a review. Archives of Current Research International. 2024;24(2):106-15. https://doi.org/10.9734/acri/2024/v24i2637
  20. 20. Wang QH, Fan K, Li DW, Han CM, Qu YY, Qi YK, et al. Identification, virulence and fungicide sensitivity of Colletotrichum gloeosporioides ss responsible for walnut anthracnose disease in China. Plant disease. 2020;104(5):1358-68. https://doi.org/10.1094/PDIS-12-19-2569-RE
  21. 21. Bautista-Baños S, Sivakumar D, Bello-Pérez A, Villanueva-Arce R, Hernández-López M. A review of the management alternatives for controlling fungi on papaya fruit during the postharvest supply chain. Crop Protection. 2013;49:8-20. https://doi.org/10.1016/j.cropro.2013.02.011
  22. 22. Panuwet P, Prapamontol T, Chantara S, Thavornyuthikarn P, Montesano MA, Whitehead Jr RD, et al. Concentrations of urinary pesticide metabolites in small-scale farmers in Chiang Mai Province, Thailand. Science of the Total Environment. 2008;407(1):655-68. https://doi.org/10.1016/j.scitotenv.2008.08.044
  23. 23. Akhtar J, Dubey SC. Lasiodiplodia theobromae, a potential post-harvest threat to agri-horticultural crops and its morpho-molecular diversity. Indian Journal of Plant Protection. 2021;49(2):125-30.
  24. 24. Karunanayake KO, Adikaram NK. Stem-end rot in major tropical and sub-tropical fruit species. Ceylon Journal of Science. 2020;49(5):327-36. https://doi.org/10.4038/cjs.v49i5.7800
  25. 25. Xu L, Lan X, Chen Y, He R, Wang M, Zhang Y, et al. Identity, pathogenicity and genetic diversity of Lasiodiplodia associated with stem-end rot of avocado in China. Plant Disease. 2024;108(9). https://doi.org/10.1094/PDIS-09-23-1939-SR
  26. 26. Sharma R. Pathogenecity of Aspergillus niger in plants. Cibtech Journal of Microbiology. 2012;1(1):47-51.
  27. 27. Tian J, Wang Y, Zeng H, Li Z, Zhang P, Tessema A, Peng X. Efficacy and possible mechanisms of perillaldehyde in control of Aspergillus niger causing grape decay. International Journal of Food Microbiology. 2015;202:27-34. https://doi.org/10.1016/j.ijfoodmicro.2015.02.022
  28. 28. Min D, Li F, Ali M, Zhang X, Liu Y. Application of methyl jasmonate to control disease of postharvest fruit and vegetables: A Meta-analysis. Postharvest Biology and Technology. 2024;208:112667. https://doi.org/10.1016/j.postharvbio.2023.112667
  29. 29. You Y, Zhou Y, Duan X, Mao X, Li Y. Research progress on the application of different preservation methods for controlling fungi and toxins in fruit and vegetable. Critical Reviews in Food Science and Nutrition. 2023;63(33):12441-52. https://doi.org/10.1080/10408398.2022.2101982
  30. 30. Zhang X, Li B, Zhang Z, Chen Y, Tian S. Antagonistic yeasts: A promising alternative to chemical fungicides for controlling postharvest decay of fruit. Journal of Fungi. 2020;6(3):158. https://doi.org/10.3390/jof6030158
  31. 31. El-Tarabily KA, Sivasithamparam K. Potential of yeasts as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Mycoscience. 2006;47:25-35. https://doi.org/10.1007/S10267-005-0268-2
  32. 32. Droby S, Cohen L, Daus A, Weiss B, Horev B, Chalutz E, et al. Commercial testing of Aspire: a yeast preparation for the biological control of postharvest decay of citrus. Biological control. 1998;12(2):97-101. https://doi.org/10.1006/bcon.1998.0615
  33. 33. Díaz MA, Pereyra MM, Picón-Montenegro E, Meinhardt F, Dib JR. Killer yeasts for the biological control of postharvest fungal crop diseases. Microorganisms. 2020;8(11):1680. https://doi.org/10.3390/microorganisms8111680
  34. 34. Cignola R, Zucchinali S, Firrao G, Di Francesco A. Aspects of the biocontrol activity of Aureobasidium spp. strain against Penicillium expansum of apple. Annals of Applied Biology. 2024;184(3):307-13. https://doi.org/10.1111/aab.12892
  35. 35. Di Canito A, Mateo-Vargas MA, Mazzieri M, Cantoral J, Foschino R, Cordero-Bueso G, et al. The role of yeasts as biocontrol agents for pathogenic fungi on postharvest grapes: A review. Foods. 2021;10(7):1650. https://doi.org/10.3390/foods10071650
  36. 36. Hartati S, Wiyono S, Hidayat SH, Sinaga MS. Antagonism mechanism of epiphytic yeast against anthracnose pathogen (Colletotrichum acutatum) on chilli. Jurnal Perlindungan Tanaman Indonesia. 2019;23(1):47-53. https://doi.org/10.22146/jpti.40951
  37. 37. Suasaard S, Eakjamnong W, Dethoup T. A novel biological control agent against postharvest mango disease caused by Lasiodioplodia theobromae. European Journal of Plant Pathology. 2019;155:583-92. https://doi.org/10.1007/s10658-019-01794-z
  38. 38. Kaewkrajay C, Dethoup T. Biocontrol ability of marine yeasts against postharvest diseases in mangos caused by Colletotrichum gloeosporioides and Lasiodiplodia theobromae. European Journal of Plant Pathology. 2024;168(4):709-21. https://doi.org/10.1007/s10658-023-02795-9
  39. 39. Bordoh PK, Ali A, Dickinson M, Siddiqui Y, Romanazzi G. A review on the management of postharvest anthracnose in dragon fruits caused by Colletotrichum spp. Crop Protection. 2020;130:105067. https://doi.org/10.1016/j.cropro.2019.105067
  40. 40. Hassan H, Mohamed MT, Yusoff SF, Hata EM, Tajidin NE. Selecting antagonistic yeast for postharvest biocontrol of Colletotrichum gloeosporioides in papaya fruit and possible mechanisms involved. Agronomy. 2021;11(4):760. https://doi.org/10.3390/agronomy11040760
  41. 41. Shao YZ, Zeng JK, Hong TA, Yi ZH, Wen LI. The chemical treatments combined with antagonistic yeast control anthracnose and maintain the quality of postharvest mango fruit. Journal of Integrative Agriculture. 2019;18(5):1159-69. https://doi.org/10.1016/S2095-3119(18)62128-8
  42. 42. Zhimo VY, Dilip D, Sten J, Ravat VK, Bhutia DD, Panja B, et al. Antagonistic yeasts for biocontrol of the banana postharvest anthracnose pathogen Colletotrichum musae. Journal of Phytopathology. 2017;165(1):35-43. https://doi.org/10.1111/jph.12533
  43. 43. Santos A, Sánchez A, Marquina D. Yeasts as biological agents to control Botrytis cinerea. Microbiological Research. 2004;159(4):331-8. https://doi.org/10.1016/j.micres.2004.07.001
  44. 44. Sun K, Wang Z, Zhang X, Wei Z, Zhang X, Li L, et al. Enhancement of biocontrol efficacy of Pichia kudriavzevii induced by Ca ascorbate against Botrytis cinerea in cherry tomato fruit and the possible mechanisms of action. Microbiology Spectrum. 2021;9(3):e01507-21. https://doi.org/10.1128/spectrum.01507-21
  45. 45. Podgórska-Kryszczuk I. Biological control of Aspergillus flavus by the yeast Aureobasidium pullulans in vitro and on tomato fruit. Plants. 2023;12(2):236. https://doi.org/10.3390/plants12020236
  46. 46. Foku JM, Ackah M, Qiya Y, Zhang H. Phytic acid-mediated enhancement of Meyerozyma caribbica biocontrol of Aspergillus carbonarius infection in grape berries through regulation of ROS metabolism. Scientia Horticulturae. 2024;333:113213. https://doi.org/10.1016/j.scienta.2024.113213
  47. 47. Wu Y, Ji C, Jiang Y, Hu H, Yu T, Yan F. Mechanisms of Meyerozyma caribbica isolated from Tibetan soil to inhibit Aspergillus ochraceus on grapes. Postharvest Biology and Technology. 2024;210:112797. https://doi.org/10.1016/j.postharvbio.2024.112797
  48. 48. Edward-Rajanayagam RM, Narváez-Zapata JA, Ramírez-González MD, de la Cruz-Arguijo EA, López-Meyer M, Larralde-Corona CP. Yeast mixtures for postharvest biocontrol of diverse fungal rots on citrus Limon var eureka. Horticulturae. 2023;9(5):573. https://doi.org/10.3390/horticulturae9050573
  49. 49. Öztekin S, Karbancioglu-Guler F. Biological control of green mould on mandarin fruit through the combined use of antagonistic yeasts. Biological Control. 2023;180:105186. https://doi.org/10.1016/j.biocontrol.2023.105186
  50. 50. Abo-Elyousr KA, Al-Qurashi AD, Almasoudi NM. Evaluation of the synergy between Schwanniomyces vanrijiae and propolis in the control of Penicillium digitatum on lemons. Egyptian Journal of Biological Pest Control. 2021;31:66. https://doi.org/10.1186/s41938-021-00415-4
  51. 51. Chen O, Yi L, Deng L, Ruan C, Zeng K. Screening antagonistic yeasts against citrus green mold and the possible biocontrol mechanisms of Pichia galeiformis (BAF03). Journal of the Science of Food and Agriculture. 2020;100(10):3812-21. https://doi.org/10.1002/jsfa.10407
  52. 52. Sukmawati D, Family N, Hidayat I, Sayyed RZ, Elsayed EA, Dailin DJ, et al. Biocontrol activity of Aureubasidium pullulans and Candida orthopsilosis isolated from Tectona grandis L. phylloplane against Aspergillus sp. in post-harvested citrus fruit. Sustainability. 2021;13(13):7479. https://doi.org/10.3390/su13137479
  53. 53. Nasahi C, Yusuf AR, Hartati S, Kurniadie D, Subakti-Putri SN. Yeast potential in controlling Aspergillus sp. causing fruit rot disease in dekopon oranges (Citrus reticulata ‘Shiranui’). Research on Crops. 2023;24(2):407-15. https://doi.org/10.31830/2348-7542.2023.ROC-922
  54. 54. Abdel Maksoud Elfaramawy DS, Abo Ghalia HH, Ashour SM, Mohamed AA, Zaki SS. Evaluation of the native killer yeasts against the postharvest phytopathogenic mould of balady orange fruits. Journal of Scientific Research in Science. 2022;39(2):23-48. https://doi.org/10.21608/jsrs.2022.275786
  55. 55. López-Cruz R, Segarra G, Torres R, Teixidó N, Ragazzo-Sanchez JA, Calderon-Santoyo M. Biocontrol efficacy of Meyerozyma guilliermondii LMA-Cp01 against post-harvest pathogens of fruits. Archives of Phytopathology and Plant Protection. 2023;56(13):1003-20. https://doi.org/10.1080/03235408.2023.2251907
  56. 56. El Ghaouth A, Wilson C, Wisniewski M, Droby S, Smilanick JL, Korsten L. Biological control of postharvest diseases of fruits and vegetables. In: Applied mycology and biotechnology. Vol. 2. Elsevier; 2002. p. 219-38. https://doi.org/10.1016/S1874-5334(02)80012-0
  57. 57. Çorbaci C, Uçar FB. Purification, characterization and in vivo biocontrol efficiency of killer toxins from Debaryomyces hansenii strains. International Journal of Biological Macromolecules. 2018;119:1077-82. https://doi.org/10.1016/j.ijbiomac.2018.07.121
  58. 58. Konsue W, Dethoup T, Limtong S. Biological control of fruit rot and anthracnose of postharvest mango by antagonistic yeasts from economic crops leaves. Microorganisms. 2020;8(3):317. https://doi.org/10.3390/microorganisms8030317
  59. 59. Carvalho Castro AP, Tavares PF, Araújo CP, da Paz CD, Gava CA. Semi-commercial field evaluation of yeast formulations for control of mango postharvest decay caused by Botryosphaeriacean fungi in organic production. International Journal of Fruit Science. 2020;20(2):207-20. https://doi.org/10.1080/15538362.2019.1613469
  60. 60. Zhimo VY, Bhutia DD, Saha J. Biological control of post harvest fruit diseases using antagonistic yeasts in India. Journal of Plant Pathology. 2016:275-83. https://doi.org/10.4454/JPP.V98I2.026
  61. 61. Lima JR, Gondim DM, Oliveira JT, Oliveira FS, Gonçalves LR, Viana FM. Use of killer yeast in the management of postharvest papaya anthracnose. Postharvest Biology and Technology. 2013;83:58-64. https://doi.org/10.1016/j.postharvbio.2013.03.014
  62. 62. Tsioka A, Psilioti Dourmousi K, Poulaki EG, Papoutsis G, Tjamos SE, Gkizi D. Biocontrol strategies against Botrytis cinerea in viticulture: evaluating the efficacy and mode of action of selected wine making yeast strains. Letters in Applied Microbiology. 2024;77(3):ovae026. https://doi.org/10.1093/lambio/ovae026
  63. 63. Solairaj D, Legrand NN, Yang Q, Zhang H. Isolation of pathogenic fungi causing postharvest decay in table grapes and in vivo biocontrol activity of selected yeasts against them. Physiological and Molecular Plant Pathology. 2020;110:101478. https://doi.org/10.1016/j.pmpp.2020.101478
  64. 64. Chen PH, Chen RY, Chou JY. Screening and evaluation of yeast antagonists for biological control of Botrytis cinerea on strawberry fruits. Mycobiology. 2018;46(1):33-46. https://doi.org/10.1080/12298093.2018.1454013
  65. 65. Ramos-Bell S, Hernández-Montiel LG, Velázquez-Estrada RM, Herrera-González JA, Gutiérrez-Martínez P. Potential of Debaryomyces hansenii strains on the inhibition of Botrytis cinerea in blueberry fruits (Vaccinium corymbosum L.). Horticulturae. 2022;8(12):1125. https://doi.org/10.3390/horticulturae8121125
  66. 66. Gao Z, Zhang R, Xiong B. Management of postharvest diseases of kiwifruit with a combination of the biocontrol yeast Candida oleophila and an oligogalacturonide. Biological Control. 2021;156:104549. https://doi.org/10.1016/j.biocontrol.2021.104549
  67. 67. Iñiguez-Moreno M, González-Gutiérrez KN, Ragazzo-Sánchez JA, Narváez-Zapata JA, Sandoval-Contreras T, Calderón-Santoyo M. Morphological and molecular identification of the causal agents of post-harvest diseases in avocado fruit, and potential biocontrol with Meyerozyma caribbica. Archives of Phytopathology and Plant Protection. 2021;54(7-8):411-30. https://doi.org/10.1080/03235408.2020.1834806
  68. 68. Yan F, Zhang D, Ye X, Wu Y, Fang T. Potential of Saturnispora diversa MA as a postharvest biocontrol agent against anthracnose in loquat fruit. Biological Control. 2022;173:105006. https://doi.org/10.1016/j.biocontrol.2022.105006
  69. 69. Lei X, Deng B, Ruan C, Deng L, Zeng K. Phenylethanol as a quorum sensing molecule to promote biofilm formation of the antagonistic yeast Debaryomyces nepalensis for the control of black spot rot on jujube. Postharvest Biology and Technology. 2022;185:111788. https://doi.org/10.1016/j.postharvbio.2021.111788
  70. 70. Ezzouggari R, Bahhou J, Taoussi M, Seddiqi Kallali N, Aberkani K, Barka EA, et al. Yeast warriors: Exploring the potential of yeasts for sustainable citrus post-harvest disease management. Agronomy. 2024;14(2):288. https://doi.org/10.3390/agronomy14020288
  71. 71. Agirman B, Carsanba E, Settanni L, Erten H. Exploring yeast-based microbial interactions: the next frontier in postharvest biocontrol. Yeast. 2023;40(10):457-75. https://doi.org/10.1002/yea.3895
  72. 72. Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, El Hamss H, et al. Biological control of plant pathogens: A global perspective. Microorganisms. 2022;10(3):596. https://doi.org/10.3390/microorganisms10030596
  73. 73. Spadaro D, Droby S. Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science & Technology. 2016;47:39-49. https://doi.org/10.1016/j.tifs.2015.11.003
  74. 74. van Loon L. Helping plants to defend themselves: biocontrol by disease-suppressing rhizobacteria. In: Developments in plant genetics and breeding. Vol. 6. Elsevier; 2000. p. 203-13. https://doi.org/10.1016/S0168-7972(00)80123-1
  75. 75. Köhl J, Kolnaar R, Ravensberg WJ. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Frontiers in Plant Science. 2019;10:845. https://doi.org/10.3389/fpls.2019.00845
  76. 76. González-Estrada RR, Carvajal-Millán E, Ragazzo-Sánchez JA, Bautista-Rosales PU, Calderón-Santoyo M. Control of blue mold decay on Persian lime: Application of covalently cross-linked arabinoxylans bioactive coatings with antagonistic yeast entrapped. LWT-Food Science and Technology. 2017;85:187-96. https://doi.org/10.1016/j.lwt.2017.07.019
  77. 77. Wang F, Deng H, Wu Q, Sun H, Zhang J, Li Z, et al. Biocontrol of black rot of sweet potato by Pichia pastoris recombinant strain expressing chitinase IbChiA. Scientia Horticulturae. 2024;329:112979. https://doi.org/10.1016/j.scienta.2024.112979
  78. 78. Stoykov YM, Pavlov AI, Krastanov AI. Chitinase biotechnology: production, purification, and application. Engineering in Life Sciences. 2015;15(1):30-8. https://doi.org/10.1002/elsc.201400173
  79. 79. Banani H, Spadaro D, Zhang D, Matic S, Garibaldi A, Gullino ML. Biocontrol activity of an alkaline serine protease from Aureobasidium pullulans expressed in Pichia pastoris against four postharvest pathogens on apple. International Journal of Food Microbiology. 2014;182:1-8. https://doi.org/10.1016/j.ijfoodmicro.2014.05.001
  80. 80. Masih EI, Paul B. Secretion of ß-1,3-glucanases by the yeast Pichia membranifaciens and its possible role in the biocontrol of Botrytis cinerea causing grey mold disease of the grapevine. Current Microbiology. 2002;44:391-5. https://doi.org/10.1007/s00284-001-0011-y
  81. 81. Chen X, Wei Y, Zou X, Zhao Z, Jiang S, Chen Y, et al. ß-Glucan enhances the biocontrol efficacy of marine yeast Scheffersomyeces spartinae W9 against Botrytis cinerea in strawberries. Journal of Fungi. 2023;9(4):474. https://doi.org/10.3390/jof9040474
  82. 82. Freimoser FM, Rueda-Mejia MP, Tilocca B, Migheli Q. Biocontrol yeasts: mechanisms and applications. World Journal of Microbiology and Biotechnology. 2019;35(10):154. https://doi.org/10.1007/s11274-019-2728-4
  83. 83. Wu HY, Wang F, Yang L, Chen L, Tang JR, Liu Y, et al. Carboxymethyl chitosan promotes biofilm-formation of Cryptococcus laurentii to improve biocontrol efficacy against Penicillium expansum in grapefruit. Advanced Composites and Hybrid Materials. 2024;7(1):23. https://doi.org/10.1007/s42114-023-00828-9
  84. 84. Pereyra MM, Díaz MA, Vero S, Dib JR. Enhancing biological control of postharvest green mold in lemons: Synergistic efficacy of native yeasts with diverse mechanisms of action. PLoS One. 2024;19(4):e0301584. https://doi.org/10.1371/journal.pone.0301584
  85. 85. Morath SU, Hung R, Bennett JW. Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biology Reviews. 2012;26(2-3):73-83. https://doi.org/10.1016/j.fbr.2012.07.001
  86. 86. Choinska R, Piasecka-Józwiak K, Chablowska B, Dumka J, Lukaszewicz A. Biocontrol ability and volatile organic compounds production as a putative mode of action of yeast strains isolated from organic grapes and rye grains. Antonie van Leeuwenhoek. 2020;113:1135-46. https://doi.org/10.1007/s10482-020-01420-7
  87. 87. Li Z, Liu Q, Wu C, Yuan Y, Ni X, Wu T, et al. Volatile organic compounds produced by Metschnikowia pulcherrima yeast T-2 inhibited the growth of Botrytis cinerea in postharvest blueberry fruits. Horticultural Plant Journal. 2024. https://doi.org/10.1016/j.hpj.2023.12.003
  88. 88. da Cunha T, Ferraz LP, Wehr PP, Kupper KC. Antifungal activity and action mechanisms of yeasts isolates from citrus against Penicillium italicum. International Journal of Food Microbiology. 2018;276:20-7. https://doi.org/10.1016/j.ijfoodmicro.2018.03.019
  89. 89. Zhou Y, Li W, Zeng J, Shao Y. Mechanisms of action of the yeast Debaryomyces nepalensis for control of the pathogen Colletotrichum gloeosporioides in mango fruit. Biological Control. 2018;123:111-9. https://doi.org/10.1016/j.biocontrol.2018.05.014
  90. 90. Hammami R, Oueslati M, Smiri M, Nefzi S, Ruissi M, Comitini F, et al. Epiphytic yeasts and bacteria as candidate biocontrol agents of green and blue molds of citrus fruits. Journal of Fungi. 2022;8(8):818. https://doi.org/10.3390/jof8080818
  91. 91. Oztekin S, Karbancioglu-Guler F. Bioprospection of Metschnikowia sp. isolates as biocontrol agents against postharvest fungal decays on lemons with their potential modes of action. Postharvest Biology and Technology. 2021;181:111634. https://doi.org/10.1016/j.postharvbio.2021.111634
  92. 92. Grzegorczyk M, Zarowska B, Restuccia C, Cirvilleri G. Postharvest biocontrol ability of killer yeasts against Monilinia fructigena and Monilinia fructicola on stone fruit. Food Microbiology. 2017;61:93-101. https://doi.org/10.1016/j.fm.2016.09.005
  93. 93. Chen RY, Jiang W, Fu SF, Chou JY. Screening, evaluation, and selection of yeasts with high ammonia production ability under nitrogen free condition from the cherry tomato (Lycopersicon esculentum var. cerasiforme) rhizosphere as a potential bio-fertilizer. Rhizosphere. 2022;23:100580. https://doi.org/10.1016/j.rhisph.2022.100580
  94. 94. Agirman B, Erten, H. Biocontrol ability and action mechanisms of Aureobasidium pullulans GE17 and Meyerozyma guilliermondii KL3 against Penicillium digitatum DSM2750 and Penicillium expansum DSM62841 causing postharvest diseases. Yeast. 2020;37(9-10):437-48. https://doi.org/10.1002/yea.3501
  95. 95. Delali KI, Chen O, Wang W, Yi L, Deng L, Zeng K. Evaluation of yeast isolates from kimchi with antagonistic activity against green mold in citrus and elucidating the action mechanisms of three yeast: P. kudriavzevii, K. marxianus, and Y. lipolytica. Postharvest Biology and Technology. 2021;176:111495. https://doi.org/10.1016/j.postharvbio.2021.111495
  96. 96. Leyva Salas M, Mounier J, Valence F, Coton M, Thierry A, Coton E. Antifungal microbial agents for food biopreservation—A review. Microorganisms. 2017;5(3):37. https://doi.org/10.3390/microorganisms5030037
  97. 97. Anuagasi CL, Okigbo RN, Anukwuorji CA, Okereke CN. The impact of biofungicides on agricultural yields and food security in Africa. International Journal of Agricultural Technology. 2017;13(6):953-78.

Downloads

Download data is not yet available.