Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Biostimulants in protected cultivation: Unlocking growth potential in horticultural crops

DOI
https://doi.org/10.14719/pst.8711
Submitted
6 April 2025
Published
13-08-2025

Abstract

Plant biostimulants are materials or microorganisms with high nutrient contents that are applied to plants to promote seed germination, stimulate growth and maturation and increase nutrient use efficiency. Biostimulants such as humic acid, seaweed extracts, protein hydrolysates, microbial formulations and inorganic biostimulants are used to increase plant growth, nutrient absorption and stress tolerance. Humic biostimulants enhance the nourishment of roots, while protein-derived biostimulants affect nitrogen uptake and the assimilation process. Microbial stimulants can act through various direct and indirect mechanisms, whereas seaweed biostimulants increase microbial activity, improve nutrient uptake and promote plant growth and soil health. By improving nutrient use efficiency, enhancing stress tolerance and promoting overall crop quality, biostimulants offer sustainable alternatives to conventional inputs. Biostimulants are predominantly used for high-value horticultural crops to improve flowering, yield, quality and shelf-life. Many vegetable growers face challenges due to adverse weather conditions, leading to the adoption of protected cultivation as a high-intensity method to enable year-round production. Biostimulants have been proposed as an effective strategy to promote ecofriendly agriculture, alleviate biotic and abiotic stresses under protected cultivation and reduce the cost of chemical inputs. This review describes the types and functions of biostimulants and their effects on major horticultural crops, with an emphasis on their applications in structured cultivation systems.

References

  1. 1. Maximillian J, Brusseau M, Glenn E, Matthias A. Pollution and environmental perturbations in the global system. In: Elsevier eBooks. 2019. p. 457–76. https://doi.org/10.1016/b978-0-12-814719-1.00025-2
  2. 2. Mannino G, Gentile C, Ertani A, Serio G, Bertea CM. Anthocyanins: Biosynthesis, distribution, ecological role, and use of biostimulants to increase their content in plant foods—A review. Agriculture (Basel). 2021;11(3):212. https://doi.org/10.3390/agriculture11030212
  3. 3. European Commission. A farm to fork strategy for a fair, healthy and environmentally-friendly food system. In: Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Brussels: European Commission; 2020.
  4. 4. Horticulture market report. Growth Market Reports. http://growthmarketreports.com/report/horticulture-market-global
  5. 5. Press release. Press Information Bureau. Delhi; 2023. http://pib.gov.in/PressReleasePage.aspx?PRID=1985479
  6. 6. Bulgari R, Franzoni G, Ferrante A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy. 2019;9(6):306. https://doi.org/10.3390/agronomy9060306
  7. 7. Francia, Germania, Israele, Alimentari, SAF, Veterinarie AM. Good agricultural practices for greenhouse vegetable production in the South East European countries – Principles for sustainable intensification of smallholder farms [Internet]. 2017. http://iris.unito.it/handle/2318/1639728
  8. 8. Abbott L, Macdonald L, Wong M, Webb M, Jenkins S, Farrell M. Potential roles of biological amendments for profitable grain production – A review. Agric Ecosyst Environ. 2018;256:34–50. https://doi.org/10.1016/j.agee.2017.12.021
  9. 9. Parađiković N, Teklić T, Zeljković S, Lisjak M, Špoljarević M. Biostimulants research in some horticultural plant species—A review. Food Energy Secur. 2018;8(2). https://doi.org/10.1002/fes3.162
  10. 10. European Biostimulants Industry Council (EBIC). Provide fertile ground for EU’s continued leadership in the biostimulants industry: EBIC urges policy makers to adopt the draft fertilising products regulation. Antwerp: EBIC; 2018.
  11. 11. Rouphael Y, Colla G. Editorial: Biostimulants in agriculture. Front Plant Sci. 2020;11:40. https://doi.org/10.3389/fpls.2020.00040
  12. 12. Wang Q, Ren X, Sun Y, Zhao J, Awasthi MK, Liu T, et al. Improvement of the composition and humification of different animal manures by black soldier fly bioconversion. J Clean Prod. 2021;278:123397. https://doi.org/10.1016/j.jclepro.2020.123397
  13. 13. Du Jardin P. Plant biostimulants: Definition, concept, main categories and regulation. Sci Hortic (Amsterdam). 2015;196:3–14. https://doi.org/10.1016/j.scienta.2015.09.021
  14. 14. Canellas LP, Olivares FL. Physiological responses to humic substances as plant growth promoter. Chem Biol Technol Agric. 2014;1(1):3. https://doi.org/10.1186/2196-5641-1-3
  15. 15. Mora V, Bacaicoa E, Zamarreño AM, Aguirre E, Garnica M, Fuentes M, et al. Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients. J Plant Physiol. 2010;167(8):633–42. https://doi.org/10.1016/j.jplph.2009.11.018
  16. 16. Olivares FL, Busato JG, De Paula AM, Da Silva Lima L, Aguiar NO, Canellas LP. Plant growth promoting bacteria and humic substances: Crop promotion and mechanisms of action. Chem Biol Technol Agric. 2017;4(1):5. https://doi.org/10.1186/s40538-017-0112-x
  17. 17. Canellas LP, Spaccini R, Piccolo A, Dobbss LB, Okorokova-Façanha AL, De Araújo Santos G, et al. Relationships between chemical characteristics and root growth promotion of humic acids isolated from Brazilian oxisols. Soil Sci. 2009;174(11):611–20. https://doi.org/10.1097/ss.0b013e3181bf1e03
  18. 18. Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem Biol Technol Agric. 2017;4(1):5. https://doi.org/10.1186/s40538-017-0089-5
  19. 19. Dziugieł T, Wadas W. Possibility of increasing early crop potato yield with foliar application of seaweed extracts and humic acids. J Cent Eur Agric. 2020;21(2):300–10. https://doi.org/10.5513/jcea01/21.2.2576
  20. 20. Shalaby OAE, El-Messairy MM. Humic acid and boron treatment to mitigate salt stress on the melon plant. Acta Agric Slov. 2018;111(2):421–9. https://doi.org/10.14720/aas.2018.111.2.10
  21. 21. Balmori DM, Domínguez CYA, Carreras CR, Rebatos SM, Farías LBP, Izquierdo FG, et al. Foliar application of humic liquid extract from vermicompost improves garlic (Allium sativum L.) production and fruit quality. Int J Recycl Org Waste Agric. 2019;8(S1):103–12. https://doi.org/10.1007/s40093-019-0279-1
  22. 22. Shehata SA, Abdelgawad KF, El-Mogy MM. Quality and shelf-life of onion bulbs influenced by biostimulants. Int J Veg Sci. 2017;23(4):362–71. https://doi.org/10.1080/19315260.2017.1298170
  23. 23. Pavani T, Deshmukh PW, Yadav OS. Effect of foliar application of humic acid on yield parameters and quality of chilli. J Pharmacogn Phytochem. 2022;11(3):235–9. https://doi.org/10.22271/phyto.2022.v11.i3c.14423
  24. 24. Colla G, Nardi S, Cardarelli M, Ertani A, Lucini L, Canaguier R, Rouphael Y. Protein hydrolysates as biostimulants in horticulture. Sci Hortic (Amsterdam). 2015;196:28–38. https://doi.org/10.1016/j.scienta.2015.08.037
  25. 25. Halpern M, Bar‐Tal A, Ofek M, Minz D, Müller T, Yermiyahu U. The use of biostimulants for enhancing nutrient uptake. In: Sparks DL, editor. Adv Agron. 2015. p. 141–74. https://doi.org/10.1016/bs.agron.2014.10.001
  26. 26. Colla G, Hoagland L, Ruzzi M, Cardarelli M, Bonini P, Canaguier R, et al. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front Plant Sci. 2017;8:2202. https://doi.org/10.3389/fpls.2017.02202
  27. 27. Colla G, Rouphael Y, Canaguier R, Švecová E, Cardarelli M. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front Plant Sci. 2014;5:448. https://doi.org/10.3389/fpls.2014.00448
  28. 28. Lucini L, Rouphael Y, Cardarelli M, Canaguier R, Kumar P, Colla G. The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci Hortic (Amsterdam). 2015;182:124–33. https://doi.org/10.1016/j.scienta.2014.11.022
  29. 29. Kalimuthu K, Kumutha K, Sabarinathan KG, Priya V, Mini ML, Mini ML, Amutha R. Unraveling the intriguing potential of protein-rich microbial biostimulants for horticultural crops. Plant Sci Today. 2024. https://doi.org/10.14719/pst.4784
  30. 30. Zuzunaga-Rosas J, Silva-Valdiviezo D, Calone R, Lupuţ I, Ibáñez-Asensio S, Boscaiu M, et al. Biochemical responses to salt stress and biostimulant action in tomato plants grown in two different soil types. Horticulturae. 2023;9(11):1209. https://doi.org/10.3390/horticulturae9111209
  31. 31. Casadesús A, Pérez-Llorca M, Munné-Bosch S, Polo J. An enzymatically hydrolyzed animal protein-based biostimulant (Pepton) increases salicylic acid and promotes growth of tomato roots under temperature and nutrient stress. Front Plant Sci. 2020;11:953. https://doi.org/10.3389/fpls.2020.00953
  32. 32. Sitohy MZ, Desoky EM, Osman A, Rady MM. Pumpkin seed protein hydrolysate treatment alleviates salt stress effects on Phaseolus vulgaris by elevating antioxidant capacity and recovering ion homeostasis. Sci Hortic (Amsterdam). 2020;271:109495. https://doi.org/10.1016/j.scienta.2020.109495
  33. 33. Soppelsa S, Kelderer M, Casera C, Bassi M, Robatscher P, Andreotti C. Use of biostimulants for organic apple production: Effects on tree growth, yield, and fruit quality at harvest and during storage. Front Plant Sci. 2018;9:1342. https://doi.org/10.3389/fpls.2018.01342
  34. 34. Boselli M, Bahouaoui M, Lachhab N, Sanzani S, Ferrara G, Ippolito A. Protein hydrolysates effects on grapevine (Vitis vinifera L., cv. Corvina) performance and water stress tolerance. Sci Hortic (Amsterdam). 2019;258:108784. https://doi.org/10.1016/j.scienta.2019.108784
  35. 35. Alí O, Ramsubhag A, Jayaraman J. Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants. 2021;10(3):531. https://doi.org/10.3390/plants10030531
  36. 36. Carvalho MEA, Castro PDC, Novembre ADC, Chamma HMCP. Seaweed extract improves the vigor and provides the rapid emergence of dry bean seeds. Am Eurasian J Agric Environ Sci. 2013;13(8):1104–7. https://doi.org/10.5829/idosi.aejaes.2013.13.08.11015
  37. 37. Dookie M, Alí O, Ramsubhag A, Jayaraj J. Flowering gene regulation in tomato plants treated with brown seaweed extracts. Sci Hortic (Amsterdam). 2021;276:109715. https://doi.org/10.1016/j.scienta.2020.109715
  38. 38. Blunden G, Jenkins TA, Liu Y. Enhanced leaf chlorophyll levels in plants treated with seaweed extract. J Appl Phycol. 1996;8(6):535–43. https://doi.org/10.1007/bf02186333
  39. 39. Pereira C, Dias MI, Petropoulos SA, Plexida S, Chrysargyris A, Tzortzakis N, et al. The effects of biostimulants, biofertilizers and water-stress on nutritional value and chemical composition of two spinach genotypes (Spinacia oleracea L.). Molecules. 2019;24(24):4494. https://doi.org/10.3390/molecules24244494
  40. 40. Weber N, Schmitzer V, Jakopic J, Stampar F. First fruit in season: Seaweed extract and silicon advance organic strawberry (Fragaria×ananassa Duch.) fruit formation and yield. Sci Hortic (Amsterdam). 2018;242:103–9. https://doi.org/10.1016/j.scienta.2018.07.038
  41. 41. Petropoulos SA, Fernandes Â, Plexida S, Chrysargyris A, Tzortzakis N, Barreira JCM, et al. Biostimulants application alleviates water stress effects on yield and chemical composition of greenhouse green bean (Phaseolus vulgaris L.). Agronomy. 2020;10(2):181. https://doi.org/10.3390/agronomy10020181
  42. 42. Halshoy H, Mahmood A, Tofiq G. Effect of plant biostimulants on growth, yield and some mineral composition of broccoli plants (Brassica oleracea var. italica). Tikrit J Agric Sci. 2023;23(1):130–40. https://doi.org/10.25130/tjas.23.1.16
  43. 43. Abdel-Aziz H. Effect of priming with chitosan nanoparticles on germination, seedling growth and antioxidant enzymes of broad beans. Catrina. 2019;18(1):81–6. https://doi.org/10.21608/cat.2019.28609
  44. 44. Shahrajabian MH, Chaski C, Polyzos N, Tzortzakis N, Petropoulos SA. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants. Biomolecules. 2021;11(6):819. https://doi.org/10.3390/biom11060819
  45. 45. Pirbalouti AG, Malekpoor F, Salimi A, Golparvar A. Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil (Ocimum ciliatum and Ocimum basilicum) under reduced irrigation. Sci Hortic (Amsterdam). 2017;217:114–22. https://doi.org/10.1016/j.scienta.2017.01.031
  46. 46. Liu Y, Wisniewski M, Kennedy JF, Jiang Y, Tang J, Liu J. Chitosan and oligochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage. Carbohydr Polym. 2016;151:474–9. https://doi.org/10.1016/j.carbpol.2016.05.103
  47. 47. Hu X, Saravanakumar K, Sathiyaseelan A, Wang M. Chitosan nanoparticles as edible surface coating agent to preserve the fresh-cut bell pepper (Capsicum annuum L. var. grossum (L.) Sendt). Int J Biol Macromol. 2020;165:948–57. https://doi.org/10.1016/j.ijbiomac.2020.09.176
  48. 48. Asgari-Targhi G, Iranbakhsh A, Ardebili ZO. Potential benefits and phytotoxicity of bulk and nano-chitosan on the growth, morphogenesis, physiology, and micropropagation of Capsicum annuum. Plant Physiol Biochem. 2018;127:393–402. https://doi.org/10.1016/j.plaphy.2018.04.013
  49. 49. Huang X, You Z, Luo Y, Yang C, Ren J, Liu Y, et al. Antifungal activity of chitosan against Phytophthora infestans, the pathogen of potato late blight. Int J Biol Macromol. 2021;166:1365–76. https://doi.org/10.1016/j.ijbiomac.2020.11.016
  50. 50. Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M. Physiological functions of beneficial elements. Curr Opin Plant Biol. 2009;12(3):267–74. https://doi.org/10.1016/j.pbi.2009.04.009
  51. 51. Haynes RJ. A contemporary overview of silicon availability in agricultural soils. J Plant Nutr Soil Sci. 2014;177(6):831–44. https://doi.org/10.1002/jpln.201400202
  52. 52. Li YC, Bi Y, Ge YH, Sun XJ, Wang Y. Antifungal activity of sodium silicate on Fusarium sulphureum and its effect on dry rot of potato tubers. J Food Sci. 2009;74(5):M213–8. https://doi.org/10.1111/j.1750-3841.2009.01154.x
  53. 53. De Paiva LG, Grangeiro LC, Nascimento CW, Costa RMC, Pereira NA, De Lima RB, et al. Selenium as an inorganic biostimulant in onion grown in a semi-arid climate. Rev Bras Eng Agríc Ambient. 2024;28(4). https://doi.org/10.1590/1807-1929/agriambi.v28n4e279061
  54. 54. Wang K, Fang Q, He P, Tu Y, Liu Z, Li B. Unveiling the potential of selenium-enriched tea: compositional profiles, physiological activities, and health benefits. Trends Food Sci Technol. 2024;145:104356. https://doi.org/10.1016/j.tifs.2024.104356
  55. 55. Weber N, Schmitzer V, Jakopic J, Stampar F. First fruit in season: seaweed extract and silicon advance organic strawberry (Fragaria × ananassa Duch.) fruit formation and yield. Sci Hortic (Amsterdam). 2018;242:103–9. https://doi.org/10.1016/j.scienta.2018.07.038
  56. 56. Shahrajabian MH, Petropoulos SA, Sun W. Survey of the influences of microbial biostimulants on horticultural crops: case studies and successful paradigms. Horticulturae. 2023;9(2):193. https://doi.org/10.3390/horticulturae9020193
  57. 57. Shukla D, Shukla P, Tandon A, Singh PC, Johri JK. Role of microorganism as new generation plant bio-stimulants: an assessment. In: New and future developments in microbial biotechnology and bioengineering. Elsevier; 2022. p. 1–16. https://doi.org/10.1016/B978-0-323-85163-3.00016-8
  58. 58. Romano I, Ventorino V, Pepe O. Effectiveness of plant beneficial microbes: overview of the methodological approaches for the assessment of root colonization and persistence. Front Plant Sci. 2020;11:6. https://doi.org/10.3389/fpls.2020.00006
  59. 59. Castiglione AM, Mannino G, Contartese V, Bertea CM, Ertani A. Microbial biostimulants as response to modern agriculture needs: composition, role and application of these innovative products. Plants. 2021;10(8):1533. https://doi.org/10.3390/plants10081533
  60. 60. Ruzzi M, Aroca R. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci Hortic (Amsterdam). 2015;196:124–34. https://doi.org/10.1016/j.scienta.2015.08.042
  61. 61. Cardarelli M, Coppa E, Rouphael Y, Mariotti R, Bonini P, Colla G. Combined applications of endophytic fungi and vegetal extracts improve crop productivity and economic profitability in processing tomato. Italus Hortus. 2020;27(2):96–105. https://doi.org/10.26353/j.itahort/2020.2.96105
  62. 62. Fusco GM, Nicastro R, Rouphael Y, Carillo P. Effects of microbial biostimulants on horticultural crops. In: Proceedings of the 3rd International Electronic Conference on Plant Sciences; 2024 Jan 15–17; MDPI: Basel, Switzerland.
  63. 63. IGAMS A, Diara IW. Biostimulants enhanced seedling root growth and bulb yields of true seed shallots (Allium cepa var. aggregatum L.). Int J Environ Agric Biotechnol. 2019;4(3):598–601. https://doi.org/10.22161/ijeab/4.3.2
  64. 64. Shirkhodaei M, Darzi MT, Haj Seyed Hadi MR. Influence of vermicompost and biostimulant on the growth and biomass of coriander (Coriandrum sativum L.). Int J Adv Biol Biomed Res. 2014;2(3):706–14.
  65. 65. Ganugi P, Fiorini A, Tabaglio V, Capra F, Zengin G, Bonini P, et al. The functional profile and antioxidant capacity of tomato fruits are modulated by the interaction between microbial biostimulants, soil properties, and soil nitrogen status. Antioxidants. 2023;12(2):520. https://doi.org/10.3390/antiox12020520
  66. 66. Gemin LG, Mógor ÁF, De Oliveira Amatussi J, Mógor G. Microalgae associated to humic acid as a novel biostimulant improving onion growth and yield. Sci Hortic (Amsterdam). 2019;256:108560. https://doi.org/10.1016/j.scienta.2019.108560
  67. 67. Ekin Z. Integrated use of humic acid and plant growth promoting rhizobacteria to ensure higher potato productivity in sustainable agriculture. Sustainability. 2019;11(12):3417. https://doi.org/10.3390/su11123417
  68. 68. Sandepogu M, Shukla PS, Asiedu S, Yurgel S, Prithiviraj B. Combination of Ascophyllum nodosum extract and humic acid improve early growth and reduces post-harvest loss of lettuce and spinach. Agriculture. 2019;9(11):240. https://doi.org/10.3390/agriculture9110240
  69. 69. Ngoroyemoto N, Kulkarni MG, Stirk WA, Gupta S, Finnie JF, Van Staden J. Interactions between microorganisms and a seaweed-derived biostimulant on the growth and biochemical composition of Amaranthus hybridus L. Nat Prod Commun. 2020;15(7):1934578X20934228. https://doi.org/10.1177/1934578x20934228
  70. 70. Druege U, Hilo A, Pérez-Pérez JM, Klopotek Y, Acosta M, Shahinnia F, et al. Molecular and physiological control of adventitious rooting in cuttings: phytohormone action meets resource allocation. Ann Bot. 2019;123(6):929–49.
  71. 71. Loconsole D, Scaltrito E, Sdao AE, Cristiano G, De Lucia B. Application of commercial seaweed extract-based biostimulants to enhance adventitious root formation in ornamental cutting propagation protocols: a review. Front Hortic. 2024;3. https://doi.org/10.3389/fhort.2024.1371090
  72. 72. Monder MJ, Kozakiewicz P, Jankowska A. The role of plant origin preparations and phenological stage in anatomy structure changes in the rhizogenesis of Rosa 'Hurdal'. Front Plant Sci. 2021;12. https://doi.org/10.3389/fpls.2021.696998
  73. 73. Lohr D, Tillmann P, Druege U, Zerche S, Rath T, Meinken E. Non-destructive determination of carbohydrate reserves in leaves of ornamental cuttings by near-infrared spectroscopy (NIRS) as a key indicator for quality assessments. Biosyst Eng. 2017;158:51–63. https://doi.org/10.1016/j.biosystemseng.2017.03.005
  74. 74. Santos PLF, Zabotto AR, Jordão HWC, Boas RLV, Broetto F, Tavares AR. Use of seaweed-based biostimulant (Ascophyllum nodosum) on ornamental sunflower seed germination and seedling growth. Ornamental Hortic. 2019;25(3):231–7. https://doi.org/10.1590/2447-536x.v25i3.2044
  75. 75. Ciriello M, Campana E, Colla G, Rouphael Y. An appraisal of nonmicrobial biostimulants’ impact on the productivity and mineral content of wild rocket (Diplotaxis tenuifolia (L.) DC.) cultivated under organic conditions. Plants. 2024;13(10):1326. https://doi.org/10.3390/plants13101326
  76. 76. Cristiano G, De Lucia B. Petunia performance under application of animal-based protein hydrolysates: effects on visual quality, biomass, nutrient content, root morphology, and gas exchange. Front Plant Sci. 2021;12. https://doi.org/10.3389/fpls.2021.640608
  77. 77. Suchitha N, Babu KK, Lakshminarayana D, Kumar SP. Studies on the effect of biostimulants on quality of cut flower of chrysanthemum (Dendranthema grandiflora cv. Denjigar Whitec). Int J Environ Clim Change. 2023;13(10):687–92. https://doi.org/10.9734/ijecc/2023/v13i102704
  78. 78. Vyshnavi DJ, Chandrashekar SY, Hemla Naik B, Hanumantharaya L, Ganapathi M. Effectualness of biostimulants on annual chrysanthemum (Chrysanthemum coronarium L.) flowering, quality and yield. Biol Forum Int J. 2023;15(10):250–4.
  79. 79. De Lucia B, Vecchietti L. Type of bio-stimulant and application method effects on stem quality and root system growth in LA lily. Eur J Hortic Sci. 2012;77(1):10.
  80. 80. Paris L, García-Caparrós P, Llanderal A, Teixeira Da Silva J, Reca J, Lao MT. Plant regeneration from nodal segments and protocorm-like bodies (PLBs) derived from Cattleya maxima J. Lindley in response to chitosan and coconut water. Propag Ornamental Plants. 2019;19(1).
  81. 81. Byczyńska A. Chitosan improves growth and bulb yield of pineapple lily (Eucomis bicolor Baker) an ornamental and medicinal plant. World Sci News. 2018;(110):159–71.
  82. 82. Chachar M, Ahmed S, Murtaza G, Jillani PS, Baloch H, Hakro RA. The impact of climate change on horticulture: a global perspective and adaptation strategies. Glob Res Environ Sustain. 2023;1(10):19–27. http://doi.org/10.26480/efcc.01.2023.41.44
  83. 83. Pattnaik RK, Mohanty S. Protected cultivation: importance, scope, and status. Food Sci Rep. 2021;2(3):19–21.
  84. 84. Petropoulos SA. Practical applications of plant biostimulants in greenhouse vegetable crop production. Agronomy. 2020;10(10):1569. http://doi.org/10.3390/agronomy10101569
  85. 85. Szparaga A, Kuboń M, Kocira S, Czerwińska E, Pawłowska A, Hara P, et al. Towards sustainable agriculture—Agronomic and economic effects of biostimulant use in common bean cultivation. Sustainability. 2019;11(17):4575. https://doi.org/10.3390/su11174575
  86. 86. Rouphael Y, Kyriacou MC, Petropoulos SA, De Pascale S, Colla G. Improving vegetable quality in controlled environments. Sci Hortic. 2018;234:275–89. https://doi.org/10.1016/j.scienta.2018.02.033
  87. 87. De Soares MA, De O Charlo HC, Carvalho M, Paiva PEB, De Coelho VP. Biostimulants increase the yield of greenhouse-grown tomato plants in summer under a tropical climate. Rev Caatinga. 2023;36(1):96–105. http://doi.org/10.1590/1983-21252023v36n111rc
  88. 88. Savvas D, Magkana P, Yfantopoulos D, Kalozoumis P, Ntatsi G. Growth and nutritional responses of zucchini squash to a novel consortium of six Bacillus sp. strains used as a biostimulant. Agronomy. 2024;14(2):362. http://doi.org/10.3390/agronomy14020362
  89. 89. Kakbra RF. Effect of seaweed, moringa leaf extract and biofertilizer on growth, yield and fruit quality of cucumber (Cucumis sativus L.) under greenhouse condition. arXiv [Preprint]. 2024 Mar 25. http://arxiv.org/abs/2403.17984
  90. 90. Abd-Elkader DY, Mohamed AA, Feleafel MN, Al-Huqail AA, Salem MZM, Ali HM, Hassan HS. Photosynthetic pigments and biochemical response of zucchini (Cucurbita pepo L.) to plant-derived extracts, microbial, and potassium silicate as biostimulants under greenhouse conditions. Front Plant Sci. 2022;13. http://doi.org/10.3389/fpls.2022.879545
  91. 91. Pereira C, Dias MI, Petropoulos SA, Plexida S, Chrysargyris A, Tzortzakis N, et al. The effects of biostimulants, biofertilizers and water-stress on nutritional value and chemical composition of two spinach genotypes (Spinacia oleracea L.). Molecules. 2019;24(24):4494. http://doi.org/10.3390/molecules24244494
  92. 92. Di Mola I, Cozzolino E, Ottaiano L, Giordano M, Rouphael Y, Colla G, Mori M. Effect of vegetal- and seaweed extract-based biostimulants on agronomical and leaf quality traits of plastic tunnel-grown baby lettuce under four regimes of nitrogen fertilization. Agronomy. 2019;9(10):571. https://doi.org/10.3390/agronomy9100571
  93. 93. Vultaggio L, Allevato E, Consentino BB, Bellitto P, Napoli S, Cannata C, et al. Joint action of Trichoderma atroviride and a vegetal derived-protein hydrolysate improves performances of woodland strawberry in Italy. Horticulturae. 2024;10:459. https://doi.org/10.3390/horticulturae10050459
  94. 94. Bhargavi S, Naik BH, Chandrashekar S, Ganapathi M, Kantharaj Y. Efficacy of biostimulants on morphology, flowering and yield of chrysanthemum (Dendranthema grandiflora) cv. Kolar local under fan and pad greenhouse. Int J Chem Stud. 2018;6(5):1831–3. http://www.chemijournal.com/archives/2018/vol6issue5/PartAF/6-5-218-273.pdf
  95. 95. Hegde PP Jr, Patil B, Kulkarni M, Hegde N, Kukanoor L, Shiragur M, H M. Efficacy of biostimulants on growth and flowering of Dendrobium orchid (Dendrobium nobile Lindl.) var. Sonia-17 under protected cultivation. Pharma Innov J. 2021;10(10):1189–91. http://www.thepharmajournal.com/archives/2021/vol10issue10/PartR/10-9-34-858.pdf
  96. 96. Thomas JM, Cr NR, M NR, Priyakumari NI, B NA. Biostimulants for promoting growth, yield and flower quality in Anthurium andreanum Lind. Int J Environ Climate Change. 2024;14(2):330–9. http://doi.org/10.9734/ijecc/2024/v14i23948
  97. 97. Ciriello M, Formisano L, El-Nakhel C, Corrado G, Rouphael Y. Biostimulatory action of a plant-derived protein hydrolysate on morphological traits, photosynthetic parameters, and mineral composition of two basil cultivars grown hydroponically under variable electrical conductivity. Horticulturae. 2022;8(5):409. http://doi.org/10.3390/horticulturae8050409
  98. 98. De Carvalho MEA, De Camargo E Castro PR, Gallo LA, Ferraz MVC Jr. Seaweed extract provides development and production of wheat. Rev Agrarian. 2014. http://ojs.ufgd.edu.br/index.php/agrarian/article/view/2459
  99. 99. Cerdán M, Sánchez-Sánchez A, Jordá JD, Juárez M, Sánchez-Andreu J. Effect of commercial amino acids on iron nutrition of tomato plants grown under lime-induced iron deficiency. J Plant Nutr Soil Sci. 2013;176(6):859–66. http://doi.org/10.1002/jpln.201200525
  100. 100. Banks J, Percival G. Evaluation of biostimulants to control Guignardia leaf blotch (Guignardia aesculi) of horsechestnut and black spot (Diplocarpon rosae) of roses. Arboric Urban For. 2012;38(6):258–61. http://doi.org/10.48044/jauf.2012.035

Downloads

Download data is not yet available.