Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Comprehensive analysis of nanotechnology-driven advancements and outlines future directions for sustainable biofuel production

DOI
https://doi.org/10.14719/pst.8719
Submitted
7 April 2025
Published
21-06-2025 — Updated on 01-07-2025
Versions

Abstract

The global energy crisis, environmental degradation and diminishing fossil fuel reserves have amplified the demand for sustainable energy alternatives. Biofuels derived from renewable resources offer a promising solution; however, their large-scale adoption is limited by challenges such as high production costs, scalability issues and low efficiency. This review examines the role of nanotechnology in overcoming these barriers by enhancing biofuel production processes. Nanostructured materials, renowned for their high surface area and catalytic efficiency are employed to optimize critical stages such as the pre-treatment of biomass, enzymatic hydrolysis and transesterification. This review emphasizes the utilization of advanced nanomaterials, including metal oxides, magnetic nanoparticles, carbon nanotubes and acid-functionalized nanoparticles, in improving production efficiency and enabling the use of non-edible feedstocks. These innovations not only boost economic viability but also reduce environmental remediation. Although these advantages exist, concerns related to nanoparticle toxicity, environmental safety and economic feasibility remain significant, necessitating future research. The review offers a comprehensive comparison of nanomaterial types, evaluates their performance in various stages of biofuel production and highlights their potential for industrial-scale application-providing fresh insights for future development. In this review, we provide a comprehensive analysis of nanotechnology-driven advancements and outlines future directions for sustainable biofuel production.

References

  1. 1. Rai M, Ingle AP, Gaikwad S, Dussán KJ, da Silva SS. Role of nanoparticles in enzymatic hydrolysis of lignocellulose in ethanol. Nanotechnology for bioenergy and biofuel production. 2017:153-71. https://doi.org/10.1007/978-3-319-45459-7_7
  2. 2. Benavides A, Benjumea P, Pashova V. El biodiesel de aceite de higuerilla como combustible alternativo para motores diesel. Dyna. 2007;74(153):141-50.
  3. 3. Benitha V, Prabhahar RSS, Nagarajan J. Enhanced yield of biodiesel through nano catalytic transesterification of palm oil. Materials Today: Proceedings. 2021;47:3088-94. https://doi.org/10.1016/j.matpr.2021.06.074
  4. 4. Assad H, Kaya S, Kumar PS, Vo DVN, Sharma A, Kumar A. Insights into the role of nanotechnology on the performance of biofuel cells and the production of viable biofuels: A review. Fuel. 2022;323:124277.
  5. 5. Aguilar LB, Campos HM, Leyva IR, Gutierrez HL, Esquivel RS, Hernandez F. Global social and economic impact on the use of Biofuels and recomendations for sustainability. Global Journal of Research In Engineering. 2011;11.
  6. 6. Singh A, Singh N, Hussain I, Singh H, Singh S. Plant-nanoparticle interaction: an approach to improve agricultural practices and plant productivity. International Journal of Pharmaceutical Science Invention. 2015;4(8):25-40.
  7. 7. El-Araby R. Biofuel production: exploring renewable energy solutions for a greener future. Biotechnology for Biofuels and Bioproducts. 2024;17(1):129. https://doi.org/10.1186/s13068-024-02571-9
  8. 8. Panahi HK, Hosseinzadeh-Bandbafha H, Dehhaghi M, Orooji Y, Mahian O, Shahbeik H, et al. Nanotechnology applications in biodiesel processing and production: A comprehensive review. Renewable and Sustainable Energy Reviews. 2024;192:114219. https://doi.org/10.1016/j.rser.2023.114219
  9. 9. Vasantha V, Sharvari S, Alfia N, Praveen N. Application of nanotechnology toward improved production of sustainable bioenergy. In: Nanomaterials: Elsevier; 2021. p. 445-79.
  10. 10. Kumar Y, Yogeshwar P, Bajpai S, Jaiswal P, Yadav S, Pathak DP, et al. Nanomaterials: stimulants for biofuels and renewables, yield and energy optimization. Materials Advances. 2021;2(16):5318-43. https://doi.org/10.1039/D1MA00538C
  11. 11. Malode SJ, Prabhu KK, Mascarenhas RJ, Shetti NP, Aminabhavi TM. Recent advances and viability in biofuel production. Energy Conversion and Management: X. 2021;10:100070. https://doi.org/10.1016/j.ecmx.2020.100070
  12. 12. Vickram S, Manikandan S, Deena S, Mundike J, Subbaiya R, Karmegam N, et al. Advanced biofuel production, policy and technological implementation of nano-additives for sustainable environmental management–A critical review. Bioresource Technology. 2023;387:129660. https://doi.org/10.1016/j.biortech.2023.129660
  13. 13. Hirani AH, Javed N, Asif M, Basu SK, Kumar A. A review on first-and second-generation biofuel productions. In: Kumar A, Ogita S, Yau YY. Biofuels: greenhouse gas mitigation and global warming: next generation biofuels and role of biotechnology. Springer, New Delhi; 2018, p.141-54. https://doi.org/10.1007/978-81-322-3763-1_8
  14. 14. Srinivasan B, Kulshreshtha G. Algal biomass for biofuels and bioproducts. In: Jerold M, Arockiasamy S, Sivasubramanian V. (eds). Bioprocess engineering for bioremediation: valorization and management techniques. Springer, Cham; 2020. p. 139-60. https://doi.org/10.1007/698_2020_580
  15. 15. Vassilev SV, Vassileva CG. Composition, properties and challenges of algae biomass for biofuel application: An overview. Fuel. 2016;181:1-33. https://doi.org/10.1016/j.fuel.2016.04.106
  16. 16. Baskar G, Aiswarya R, Soumiya S, Mohanapriya N, Nivetha SR. Recent advances in heterogeneous catalysts for biodiesel production. Journal of Energy and Environmental Sustainability. 2017;4:1-5. https://doi.org/10.47469/JEES.2017.v04.100038
  17. 17. Dahman Y, Syed K, Begum S, Roy P, Mohtasebi B. Biofuels: Their characteristics and analysis. Biomass, biopolymer-based materials, and bioenergy: Elsevier; 2019. p. 277-325. https://doi.org/10.1016/B978-0-08-102426-3.00014-X
  18. 18. Limayem A, Ricke SC. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Progress in energy and combustion science. 2012;38(4):449-67. https://doi.org/10.1016/j.pecs.2012.03.002
  19. 19. Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and molecular biology reviews. 2002;66(3):506-77. https://doi.org/10.1128/MMBR.66.3.506-577.2002
  20. 20. Gautam P, Upadhyay SN, Dubey S. Bio-methanol as a renewable fuel from waste biomass: current trends and future perspective. Fuel. 2020;273:117783. https://doi.org/10.1016/j.fuel.2020.117783
  21. 21. Mohanty P, Singh PK, Adhya TK, Pattnaik R, Mishra S. A critical review on prospects and challenges in production of biomethanol from lignocellulose biomass. Biomass Conversion and Biorefinery. 2022;12(5):1835-49. https://doi.org/10.1007/s13399-021-01815-0
  22. 22. Chintada V, Veeraiah K, Golla N. The Development in Nanotechnology and Tailor-Made Enzymes as the Future of Biobased Economy. In: Agrawal K, Verma P (eds). Biotechnological Advances in Biorefinery: Interdisciplinary Biotechnological Advances., Singapore: Springer; 2024. p. 267-88. https://doi.org/10.1007/978-981-97-5544-8_13
  23. 23. Rocha-Meneses L, Luna-delRisco M, González CA, Moncada SV, Moreno A, Sierra-Del Rio J, et al. An overview of the socio-economic, technological, and environmental opportunities and challenges for renewable energy generation from residual biomass: a case study of biogas production in Colombia. Energies. 2023;16(16):5901. https://doi.org/10.3390/en16165901
  24. 24. Ye W, Lu J, Ye J, Zhou Y. The effects and mechanisms of zero-valent iron on anaerobic digestion of solid waste: A mini-review. Journal of Cleaner Production. 2021;278:123567. https://doi.org/10.1016/j.jclepro.2020.123567
  25. 25. Liu H, Kumar V, Yadav V, Guo S, Sarsaiya S, Binod P, et al. Bioengineered biochar as smart candidate for resource recovery toward circular bio-economy: a review. Bioengineered. 2021;12(2):10269-301. https://doi.org/10.1080/21655979.2021.1993536
  26. 26. Zhang Y, Shen J. Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater. International Journal of Hydrogen Energy. 2007;32(1):17-23. https://doi.org/10.1016/j.ijhydene.2006.06.004
  27. 27. Wang J, Yin Y. Fermentative hydrogen production using pretreated microalgal biomass as feedstock. Microbial Cell Factories. 2018;17:1-16. https://doi.org/10.1186/s12934-018-0871-5
  28. 28. Taherdanak M, Zilouei H, Karimi K. Investigating the effects of iron and nickel nanoparticles on dark hydrogen fermentation from starch using central composite design. International Journal of Hydrogen Energy. 2015;40(38):12956-63.
  29. https://doi.org/10.1016/j.ijhydene.2015.08.004
  30. 29. Xie C, Niu Z, Kim D, Li M, Yang P. Surface and interface control in nanoparticle catalysis. Chemical Reviews. 2019;120(2):1184-249. https://doi.org/10.1021/acs.chemrev.9b00220
  31. 30. Xu C, Tong S, Sun L, Gu X. Cellulase immobilization to enhance enzymatic hydrolysis of lignocellulosic biomass: an all-inclusive review. Carbohydrate Polymers. 2023;321:121319. https://doi.org/10.1016/j.carbpol.2023.121319
  32. 31. Manikandan S, Subbaiya R, Biruntha M, Krishnan RY, Muthusamy G, Karmegam N. Recent development patterns, utilization and prospective of biofuel production: Emerging nanotechnological intervention for environmental sustainability–A review. Fuel. 2022;314:122757.https://doi.org/10.1016/j.fuel.2021.122757
  33. 32. Liu Z, Lv F, Zheng H, Zhang C, Wei F, Xing XH. Enhanced hydrogen production in a UASB reactor by retaining microbial consortium onto carbon nanotubes (CNTs). International Journal of Hydrogen Energy. 2012;37(14):10619-26. https://doi.org/10.1016/j.ijhydene.2012.04.057
  34. 33. Wannapokin A, Huang HT, Chang PH, Chien YW, Hung CH. Improving production of biohydrogen from COOH-functionalized multiwalled carbon nanotubes through Co-immobilization with Clostridium pasteurianum. International Journal of Hydrogen Energy. 2022;47(96):40704-13. https://doi.org/10.1016/j.ijhydene.2022.09.095
  35. 34. Lee DG, Ponvel KM, Kim M, Hwang S, Ahn IS, Lee CH. Immobilization of lipase on hydrophobic nano-sized magnetite particles. Journal of Molecular Catalysis B: Enzymatic. 2009;57(1-4):62-6. https://doi.org/10.1016/j.molcatb.2008.06.017
  36. 35. Pavlidis I, Tsoufis T, Enotiadis A, Gournis D, Stamatis H. Functionalized multi‐wall carbon nanotubes for lipase immobilization. Advanced Engineering Materials. 2010;12(5):B179-B83. https://doi.org/10.1002/adem.200980021
  37. 36. Khan M, Anwer T, Mohammad F. Sensing properties of sulfonated multi-walled carbon nanotube and graphene nanocomposites with polyaniline. Journal of Science: Advanced Materials and Devices. 2019;4(1):132-42. https://doi.org/10.1016/j.jsamd.2019.02.002
  38. 37. Verma ML, Naebe M, Barrow CJ, Puri M. Enzyme immobilisation on amino-functionalised multi-walled carbon nanotubes: structural and biocatalytic characterisation. PloS one. 2013;8(9):e73642. https://doi.org/10.1371/journal.pone.0073642
  39. 38. Ahmad R, Khare SK. Immobilization of Aspergillus niger cellulase on multiwall carbon nanotubes for cellulose hydrolysis. Bioresource Technology. 2018;252:72-5. https://doi.org/10.1016/j.biortech.2017.12.082
  40. 39. Mubarak N, Wong J, Tan K, Sahu J, Abdullah E, Jayakumar N, et al. Immobilization of cellulase enzyme on functionalized multiwall carbon nanotubes. Journal of Molecular Catalysis B: Enzymatic. 2014;107:124-31. https://doi.org/10.1016/j.molcatb.2014.06.002
  41. 40. Tran DT, Chen CL, Chang JS. Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production. Journal of Biotechnology. 2012;158(3):112-9. https://doi.org/10.1016/j.jbiotec.2012.01.018
  42. 41. Singh OV, Chandel AK. Sustainable biotechnology-enzymatic resources of renewable energy: Springer; 2018. https://doi.org/10.1007/978-3-319-95480-6
  43. 42. Bilal M, Zhao Y, Rasheed T, Iqbal HM. Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review. International Journal of Biological Macromolecules. 2018;120:2530-44. https://doi.org/10.1016/j.ijbiomac.2018.09.025
  44. 43. Huang PJ, Chang KL, Hsieh JF, Chen ST. Catalysis of Rice Straw Hydrolysis by the Combination of Immobilized Cellulase from Aspergillus niger on β‐Cyclodextrin‐Fe3O4 Nanoparticles and Ionic Liquid. BioMed Research International. 2015;2015(1):409103. https://doi.org/10.1155/2015/409103
  45. 44. Teo SH, Islam A, Chan ES, Choong ST, Alharthi NH, Taufiq-Yap YH, et al. Efficient biodiesel production from Jatropha curcus using CaSO4/Fe2O3-SiO2 core-shell magnetic nanoparticles. Journal of Cleaner Production. 2019;208:816-26. https://doi.org/10.1016/j.jclepro.2018.10.107
  46. 45. Singh D, Singh K, Jadeja Y, Menon SV, Singh P, Ibrahim SM, et al. Magnetic nano-sized solid acid catalyst bearing sulfonic acid groups for biodiesel synthesis and oxidation of sulfides. Scientific Reports. 2025;15(1):1397. https://doi.org/10.1038/s41598-024-84494-x
  47. 46. Dantas J, Leal E, Mapossa A, Cornejo D, Costa A. Magnetic nanocatalysts of Ni0. 5Zn0. 5Fe2O4 doped with Cu and performance evaluation in transesterification reaction for biodiesel production. Fuel. 2017;191:463-71. https://doi.org/10.1016/j.fuel.2016.11.107
  48. 47. Shakeel N, Ahamed MI, Ahmed A, Rahman MM, Asiri AM. Functionalized magnetic nanoparticle-reduced graphene oxide nanocomposite for enzymatic biofuel cell applications. International Journal of Hydrogen Energy. 2019;44(52):28294-304.
  49. https://doi.org/10.1016/j.ijhydene.2019.09.037
  50. 48. Cherian E, Dharmendirakumar M, Baskar G. Immobilization of cellulase onto MnO2 nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste. Chinese Journal of Catalysis. 2015;36(8):1223-9.
  51. https://doi.org/10.1016/S1872-2067(15)60906-8
  52. 49. Ivanova V, Petrova P, Hristov J. Application in the ethanol fermentation of immobilized yeast cells in matrix of alginate/magnetic nanoparticles, on chitosan-magnetite microparticles and cellulose-coated magnetic nanoparticles. arXiv preprint arXiv. 2011;11050619.
  53. 50. Lee KH, Choi IS, Kim YG, Yang DJ, Bae HJ. Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads. Bioresource Technology. 2011;102(17):8191-8.
  54. https://doi.org/10.1016/j.biortech.2011.06.063
  55. 51. Duraiarasan S, Razack SA, Manickam A, Munusamy A, Syed MB, Ali MY, et al. Direct conversion of lipids from marine microalga C. salina to biodiesel with immobilised enzymes using magnetic nanoparticle. Journal of Environmental Chemical Engineering. 2016;4(1):1393-8. https://doi.org/10.1016/j.jece.2015.12.030
  56. 52. Mahmood T, Zada B, Malik S. Effect of Iron Nanoparticles on Hyacinthâ â ‚¬ â „¢ s Fermentation. International Journal of Sciences. 2013;2(10):106-21.
  57. 53. Nath D, Manhar AK, Gupta K, Saikia D, Das SK, Mandal M. Phytosynthesized iron nanoparticles: effects on fermentative hydrogen production by Enterobacter cloacae DH-89. Bulletin of Materials Science. 2015;38:1533-8.
  58. https://doi.org/10.1007/s12034-015-0974-0
  59. 54. Engliman NS, Abdul PM, Wu S-Y, Jahim JM. Influence of iron (II) oxide nanoparticle on biohydrogen production in thermophilic mixed fermentation. International Journal of Hydrogen Energy. 2017;42(45):27482-93.
  60. https://doi.org/10.1016/j.ijhydene.2017.05.224
  61. 55. Malik SN, Pugalenthi V, Vaidya AN, Ghosh PC, Mudliar SN. Kinetics of nano-catalysed dark fermentative hydrogen production from distillery wastewater. Energy Procedia. 2014;54:417-30. https://doi.org/10.1016/j.egypro.2014.07.284
  62. 56. Reddy K, Nasr M, Kumari S, Kumar S, Gupta SK, Enitan AM, et al. Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe2+, and magnetite nanoparticles. Environmental Science and Pollution Research. 2017;24:8790-804. https://doi.org/10.1007/s11356-017-8560-1
  63. 57. Wang T, Zhang D, Dai L, Chen Y, Dai X. Effects of metal nanoparticles on methane production from waste-activated sludge and microorganism community shift in anaerobic granular sludge. Scientific Reports. 2016;6(1):25857.
  64. https://doi.org/10.1038/srep25857
  65. 58. Wang H, Covarrubias J, Prock H, Wu X, Wang D, Bossmann SH. Acid-functionalized magnetic nanoparticle as heterogeneous catalysts for biodiesel synthesis. The Journal of Physical Chemistry C. 2015;119(46):26020-8.
  66. https://doi.org/10.1021/acs.jpcc.5b08743
  67. 59. Peña L, Hohn K, Li J, Sun X, Wang D. Synthesis of propyl-sulfonic acid-functionalized nanoparticles as catalysts for cellobiose hydrolysis. Journal of Biomaterials and Nanobiotechnology. 2014;5(04):241. https://doi.org/10.4236/jbnb.2014.54028
  68. 60. Erdem S, Erdem B, Öksüzoğlu RM. Magnetic nano-sized solid acid catalyst bearing sulfonic acid groups for biodiesel synthesis. Open Chemistry. 2018;16(1):923-9. https://doi.org/10.1515/chem-2018-0092
  69. 61. Lai DM, Deng L, Guo QX, Fu Y. Hydrolysis of biomass by magnetic solid acid. Energy & Environmental Science. 2011;4(9):3552-7. https://doi.org/10.1039/c1ee01526e
  70. 62. Antunes FAF, Gaikwad S, Ingle AP, Pandit R, dos Santos JC, Rai M, et al. Bioenergy and biofuels: nanotechnological solutions for sustainable production. Nanotechnology for Bioenergy and Biofuel Production. 2017:3-18. https://doi.org/10.1007/978-3-319-45459-7_1
  71. 63. Vincent KA, Li X, Blanford CF, Belsey NA, Weiner JH, Armstrong FA. Enzymatic catalysis on conducting graphite particles. nature chemical biology. 2007;3(12):761-2. https://doi.org/10.1038/nchembio.2007.47
  72. 64. Kwon CH, Ko Y, Shin D, Kwon M, Park J, Bae WK, et al. High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic cotton fibers. nature communications. 2018;9(1):4479. https://doi.org/10.1038/s41467-018-06994-5
  73. 65. Wang C, Yang F, Gao L, Xu S, Fan L, Guo T, et al. AuPt nanoparticles clusters on MWCNTs with enhanced electrocatalytic activity for methanol oxidation. Catalysts. 2018;8(12):669. https://doi.org/10.3390/catal8120669
  74. 66. Hebie S, Holade Y, Maximova K, Sentis M, Delaporte P, Kokoh KB, et al. Advanced electrocatalysts on the basis of bare Au nanomaterials for biofuel cell applications. ACS Catalysis. 2015;5(11):6489-96. https://doi.org/10.1021/acscatal.5b01478
  75. 67. Eroglu E, Eggers PK, Winslade M, Smith SM, Raston CL. Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices. Green Chemistry. 2013;15(11):3155-9. https://doi.org/10.1039/c3gc41291a
  76. 68. Su L, Shi X, Guo G, Zhao A, Zhao Y. Stabilization of sewage sludge in the presence of nanoscale zero-valent iron (nZVI): abatement of odor and improvement of biogas production. Journal of Material Cycles and Waste Management. 2013;15:461-8.
  77. https://doi.org/10.1007/s10163-013-0150-9
  78. 69. Karri S, Sierra‐Alvarez R, Field JA. Zero valent iron as an electron‐donor for methanogenesis and sulfate reduction in anaerobic sludge. Biotechnology and Bioengineering. 2005;92(7):810-9.
  79. https://doi.org/10.1002/bit.20623
  80. 70. Kobayashi H, Hosaka Y, Hara K, Feng B, Hirosaki Y, Fukuoka A. Control of selectivity, activity and durability of simple supported nickel catalysts for hydrolytic hydrogenation of cellulose. Green Chemistry. 2014;16(2):637-44.
  81. https://doi.org/10.1039/C3GC41357H
  82. 71. Yigezu ZD, Muthukumar K. Catalytic cracking of vegetable oil with metal oxides for biofuel production. Energy Conversion and Management. 2014;84:326-33. https://doi.org/10.1016/j.enconman.2014.03.084
  83. 72. Hashmi S, Gohar S, Mahmood T, Nawaz U, Farooqi H. Biodiesel production by using CaO-Al2O3 Nano catalyst. International Journal of Engineering Research & Science. 2016;2(3):43-9.
  84. 73. Kim M, DiMaggio C, Salley SO, Ng KS. A new generation of zirconia supported metal oxide catalysts for converting low grade renewable feedstocks to biodiesel. Bioresource Technology. 2012;118:37-42.
  85. https://doi.org/10.1016/j.biortech.2012.04.035
  86. 74. Cao X, Li L, Shitao Y, Liu S, Hailong Y, Qiong W, et al. Catalytic conversion of waste cooking oils for the production of liquid hydrocarbon biofuels using in-situ coating metal oxide on SBA-15 as heterogeneous catalyst. Journal of Analytical and Applied Pyrolysis. 2019;138:137-44. https://doi.org/10.1016/j.jaap.2018.12.017
  87. 75. Abbas M, Rao BP, Islam MN, Naga S, Takahashi M, Kim C. Highly stable-silica encapsulating magnetite nanoparticles (Fe3O4/SiO2) synthesized using single surfactantless-polyol process. Ceramics International. 2014;40(1):1379-85.
  88. https://doi.org/10.1016/j.ceramint.2013.07.019
  89. 76. Kunzmann A, Andersson B, Vogt C, Feliu N, Ye F, Gabrielsson S, et al. Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicology and Applied Pharmacology. 2011;253(2):81-93. https://doi.org/10.1016/j.taap.2011.03.011
  90. 77. Mohan SV, Mohanakrishna G, Reddy SS, Raju BD, Rao KR, Sarma P. Self-immobilization of acidogenic mixed consortia on mesoporous material (SBA-15) and activated carbon to enhance fermentative hydrogen production. International Journal of Hydrogen Energy. 2008;33(21):6133-42. https://doi.org/10.1016/j.ijhydene.2008.07.096
  91. 78. Arya I, Poona A, Dikshit PK, Pandit S, Kumar J, Singh HN, et al. Current trends and future prospects of nanotechnology in biofuel production. Catalysts. 2021;11(11):1308. https://doi.org/10.3390/catal11111308
  92. 79. Sekoai PT, Ouma CNM, Du Preez SP, Modisha P, Engelbrecht N, Bessarabov DG, et al. Application of nanoparticles in biofuels: an overview. Fuel. 2019;237:380-97. https://doi.org/10.1016/j.fuel.2018.10.030
  93. 80. Baskar G, Selvakumari IAE, Aiswarya R. Biodiesel production from castor oil using heterogeneous Ni doped ZnO nanocatalyst. Bioresource Technology. 2018;250:793-8. https://doi.org/10.1016/j.biortech.2017.12.010
  94. 81. Rezania S, Mahdinia S, Oryani B, Cho J, Kwon EE, Bozorgian A, et al. Biodiesel production from wild mustard (Sinapis arvensis) seed oil using a novel heterogeneous catalyst of LaTiO3 nanoparticles. Fuel. 2022;307:121759.
  95. https://doi.org/10.1016/j.fuel.2021.121759
  96. 82. Rattanaphra D, Soodjit P, Thanapimmetha A, Saisriyoot M, Srinophakun P. Synthesis, characterization and catalytic activity studies of lanthanum oxide from Thai monazite ore for biodiesel production. Renewable Energy. 2019;131:1128-37.
  97. https://doi.org/10.1016/j.renene.2018.08.066
  98. 83. Bié J, Sepodes B, Fernandes PC, Ribeiro MH. Enzyme immobilization and co-immobilization: main framework, advances and some applications. Processes. 2022;10(3):494. https://doi.org/10.3390/pr10030494
  99. 84. Bugay CA, Caballas MC, Mercado SB, Rubio JF, Serote PK, Villarte PN, et al. A Review of Microreactors for Process Intensification. engineering proceedings. 2024;67(1):21. https://doi.org/10.3390/engproc2024067021
  100. 85. Abdelwahab TA, Mohanty MK, Sahoo PK, Behera D. Application of nanoparticles for biogas production: Current status and perspectives. Energy sources, part a: recovery, utilization, and Environmental Effects. 2024;46(1):8602-14.
  101. https://doi.org/10.1080/15567036.2020.1767730
  102. 86. Ünşar EK, Çığgın A, Erdem A, Perendeci N. Long and short term impacts of CuO, Ag and CeO2 nanoparticles on anaerobic digestion of municipal waste activated sludge. Environmental Science: Processes & Impacts. 2016;18(2):277-88.
  103. https://doi.org/10.1039/C5EM00466G
  104. 87. Saini JK, Saini R, Tewari L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech. 2015;5:337-53. https://doi.org/10.1007/s13205-014-0246-5
  105. 88. Srivastava N, Srivastava M, Manikanta A, Singh P, Ramteke P, Mishra P. Nanomaterials for biofuel production using lignocellulosic waste. Environmental Chemistry Letters. 2017;15:179-84. https://doi.org/10.1007/s10311-017-0622-6
  106. 89. Foong SY, Chan YH, Cheah WY, Kamaludin NH, Ibrahim TN, Sonne C, et al. Progress in waste valorization using advanced pyrolysis techniques for hydrogen and gaseous fuel production. Bioresource Technology. 2021;320:124299.
  107. https://doi.org/10.1016/j.biortech.2020.124299
  108. 90. Ahmed SF, Rafa N, Mofijur M, Badruddin IA, Inayat A, Ali MS, et al. Biohydrogen production from biomass sources: metabolic pathways and economic analysis. Frontiers in Energy Research. 2021;9:753878.
  109. https://doi.org/10.3389/fenrg.2021.753878
  110. 91. Banu JR, Kavitha S, Kannah RY, Bhosale RR, Kumar G. Industrial wastewater to biohydrogen: possibilities towards successful biorefinery route. Bioresource Technology. 2020;298:122378. https://doi.org/10.1016/j.biortech.2019.122378
  111. 92. Shanmugam S, Hari A, Pandey A, Mathimani T, Felix L, Pugazhendhi A. Comprehensive review on the application of inorganic and organic nanoparticles for enhancing biohydrogen production. Fuel. 2020;270:117453.
  112. https://doi.org/10.1016/j.fuel.2020.117453
  113. 93. Mishra P, Thakur S, Mahapatra DM, Ab Wahid Z, Liu H, Singh L. Impacts of nano-metal oxides on hydrogen production in anaerobic digestion of palm oil mill effluent–A novel approach. International Journal of Hydrogen Energy. 2018;43(5):2666-76.
  114. https://doi.org/10.1016/j.ijhydene.2017.12.108
  115. 94. Abdulkareem-Alsultan G, Asikin-Mijan N, Lee H, Rashid U, Islam A, Taufiq-Yap Y. A review on thermal conversion of plant oil (edible and inedible) into green fuel using carbon-based nanocatalyst. Catalysts. 2019;9(4):350.
  116. https://doi.org/10.3390/catal9040350
  117. 95. Dobrzyńska E, Szewczyńska M, Pośniak M, Szczotka A, Puchałka B, Woodburn J. Exhaust emissions from diesel engines fueled by different blends with the addition of nanomodifiers and hydrotreated vegetable oil HVO. Environmental Pollution. 2020;259:113772. https://doi.org/10.1016/j.envpol.2019.113772
  118. 96. Prabu A. Nanoparticles as additive in biodiesel on the working characteristics of a DI diesel engine. Ain Shams Engineering Journal. 2018;9(4):2343-9. https://doi.org/10.1016/j.asej.2017.04.004
  119. 97. Pan X, Jiao F, Miao D, Bao X. Oxide–zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer–Tropsch synthesis. Chemical Reviews. 2021;121(11):6588-609. https://doi.org/10.1021/acs.chemrev.0c01012
  120. 98. Santoro C, Serov A, Stariha L, Kodali M, Gordon J, Babanova S, et al. Iron based catalysts from novel low-cost organic precursors for enhanced oxygen reduction reaction in neutral media microbial fuel cells. Energy & Environmental Science. 2016;9(7):2346-53. https://doi.org/10.1039/C6EE01145D
  121. 99. Sun J, Yang G, Peng X, Kang J, Wu J, Liu G, et al. Beyond Cars: Fischer‐Tropsch Synthesis for Non‐Automotive Applications. ChemCatChem. 2019;11(5):1412-24. https://doi.org/10.1002/cctc.201802051
  122. 100. Eshraghi A, Mirzaei AA, Rahimi R, Atashi H. A simple and low cost method for the synthesis of metallic cobalt nanoparticles without further reduction as an effective catalyst for Fischer–Tropsch Synthesis. Reaction Kinetics, Mechanisms and Catalysis. 2021;134(1):127-41. https://doi.org/10.1007/s11144-021-02046-0
  123. 101. Zhang Q, Kang J, Wang Y. Development of novel catalysts for Fischer–Tropsch synthesis: tuning the product selectivity. ChemCatChem. 2010;2(9):1030-58. https://doi.org/10.1002/cctc.201000071
  124. 102. Sarma H, Joshi SJ, Prasad R, Jampilek J, editors. Biobased nanotechnology for green applications: 1st ed. Switzerland: Springer Cham; 2021. https://doi.org/10.1007/978-3-030-61985-5
  125. 103. Fazelian N, Yousefzadi M, Movafeghi A. Algal response to metal oxide nanoparticles: analysis of growth, protein content, and fatty acid composition. Bioenergy Research. 2020;13:944-54. https://doi.org/10.1007/s12155-020-10099-7
  126. 104. Malakar A, Kanel SR, Ray C, Snow DD, Nadagouda MN. Nanomaterials in the environment, human exposure pathway, and health effects: A review. Science of the Total Environment. 2021;759:143470. https://doi.org/10.1016/j.scitotenv.2020.143470
  127. 105. Rim KT, Song SW, Kim HY. Oxidative DNA damage from nanoparticle exposure and its application to workers' health: a literature review. Safety and Health at Work. 2013;4(4):177-86. https://doi.org/10.1016/j.shaw.2013.07.006
  128. 106. Sun C, Hu K, Mu D, Wang Z, Yu X. The widespread use of nanomaterials: the effects on the function and diversity of environmental microbial communities. Microorganisms. 2022;10(10):2080. https://doi.org/10.3390/microorganisms10102080
  129. 107. Cheah WY, Sankaran R, Show PL, Tg Ibrahim TN, Chew KW, Culaba A, Chang JS. Pretreatment methods for lignocellulosic biofuels production: current advances, challenges and future prospects. Biofuel Research Journal. 2020;7(1):1115-27.
  130. https://doi.org/10.18331/BRJ2020.7.1.4
  131. 108. Yadav AK, Purushotham M, Gour NI, Gurnule GG, Choudhary VC, Yadav KR. Brief Review on Nanotechnology as an Effective Tool for Production of Biofuels. Advances in Science and Technology. 2022;117:3-8. https://doi.org/10.4028/p-bdzjch
  132. 109. Demirbas A. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Conversion and Management. 2008;49(8):2106-16. https://doi.org/10.1016/j.enconman.2008.02.020
  133. 110. Moustakas K, Loizidou M, Rehan M, Nizami AS. A review of recent developments in renewable and sustainable energy systems: Key challenges and future perspective. Renewable and Sustainable Energy Reviews. 2020;119:109418.
  134. https://doi.org/10.1016/j.rser.2019.109418
  135. 111. Hassan M, Kanwal S, Singh RS, SA MA, Anwar M, Zhao C. Current challenges and future perspectives associated with configuration of microbial fuel cell for simultaneous energy generation and wastewater treatment. International Journal of Hydrogen Energy. 2024;50:323-50. https://doi.org/10.1016/j.ijhydene.2023.08.134
  136. 112. Pattarkine MV, Pattarkine VM. Nanotechnology for algal biofuels. In: Gordon R, Seckbach, J, editors. The Science of Algal Fuels. Cellular Origin, Life in Extreme Habitats and Astrobiology. Springer, Dordrecht; 2012. p. 147-63.
  137. https://doi.org/10.1007/978-94-007-5110-1_8
  138. 113. Mittal D, Kaur G, Singh P, Yadav K, Ali SA. Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook. Frontiers in Nanotechnology. 2020;2:579954. https://doi.org/10.3389/fnano.2020.579954
  139. 114. Kaya HO, Cetin AE, Azimzadeh M, Topkaya SN. Pathogen detection with electrochemical biosensors: Advantages, challenges and future perspectives. Journal of Electroanalytical Chemistry. 2021;882:114989. https://doi.org/10.1016/j.jelechem.2021.114989
  140. 115. Moshelion M, Altman A. Current challenges and future perspectives of plant and agricultural biotechnology. Trends in Biotechnology. 2015;33(6):337-42. https://doi.org/10.1016/j.tibtech.2015.03.001
  141. 116. Zhong L, Feng Y, Wang G, Wang Z, Bilal M, Lv H, et al. Production and use of immobilized lipases in/on nanomaterials: A review from the waste to biodiesel production. International Journal of Biological Macromolecules. 2020;152:207-22.
  142. https://doi.org/10.1016/j.ijbiomac.2020.02.258
  143. 117. Mandotra SK, Kumar R, Upadhyay SK, Ramteke PW. Nanotechnology: a new tool for biofuel production. In: Srivastava N, Srivastava M, Pandey H, Mishra P, Ramteke P, editors. Green Nanotechnology for Biofuel Production. Biofuel and Biorefinery Technologies. Springer, Cham; 2018. p. 17-28. https://doi.org/10.1007/978-3-319-75052-1_2
  144. 118. Esmaeili H, Nourafkan E, Nakisa M, Ahmed W. Application of nanotechnology for biofuel production. Emerging nanotechnologies for renewable energy: Elsevier; 2021. p. 149-72.
  145. https://doi.org/10.1016/B978-0-12-821346-9.00005-5
  146. 119. Varghese R, Henry JP, Irudayaraj J. U ltrasonication‐assisted transesterification for biodiesel production by using heterogeneous ZnO nanocatalyst. Environmental Progress & Sustainable Energy. 2018;37(3):1176-82.
  147. https://doi.org/10.1002/ep.12770
  148. 120. Gupta K, Chundawat TS. Zinc oxide nanoparticles synthesized using Fusarium oxysporum to enhance bioethanol production from rice-straw. Biomass and Bioenergy. 2020;143:105840. https://doi.org/10.1016/j.biombioe.2020.105840
  149. 121. Jeon HS, Park SE, Ahn B, Kim YK. Enhancement of biodiesel production in Chlorella vulgaris cultivation using silica nanoparticles. Biotechnology and Bioprocess Engineering. 2017;22:136-41. https://doi.org/10.1007/s12257-016-0657-8
  150. 122. Amen TW, Eljamal O, Khalil AM, Matsunaga N. Biochemical methane potential enhancement of domestic sludge digestion by adding pristine iron nanoparticles and iron nanoparticles coated zeolite compositions. Journal of Environmental Chemical Engineering. 2017;5(5):5002-13. https://doi.org/10.1016/j.jece.2017.09.030
  151. 123. Khanna P, Ong C, Bay BH, Baeg GH. Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials. 2015;5(3):1163-80. https://doi.org/10.3390/nano5031163
  152. 124. Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R. Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Frontiers in Chemistry. 2019;7:65. https://doi.org/10.3389/fchem.2019.00065
  153. 125. Kamali M, Persson KM, Costa ME, Capela I. Sustainability criteria for assessing nanotechnology applicability in industrial wastewater treatment: current status and future outlook. Environment International. 2019;125:261-76.
  154. https://doi.org/10.1016/j.envint.2019.01.055
  155. 126. Abomohra AE, Elsayed M, Esakkimuthu S, El-Sheekh M, Hanelt D. Potential of fat, oil and grease (FOG) for biodiesel production: A critical review on the recent progress and future perspectives. Progress in Energy and Combustion Science. 2020;81:100868. https://doi.org/10.1016/j.pecs.2020.100868
  156. 127. Nahra F, Cazin CS. Sustainability in Ru-and Pd-based catalytic systems using N-heterocyclic carbenes as ligands. Chemical Society Reviews. 2021;50(5):3094-142. https://doi.org/10.1039/C8CS00836A
  157. 128. Kazmi A, Sultana T, Ali A, Nijabat A, Li G, Hou H. Innovations in bioethanol production: A comprehensive review of feedstock generations and technology advances. Energy Strategy Reviews. 2025;57:101634. https://doi.org/10.1016/j.esr.2024.101634
  158. 129. Calvino-Casilda V, López-Peinado AJ, Martín-Aranda RM, Mayoral EP, editors. Nanocatalysis: applications and technologies. 1st ed. Boca Raton; CRC Press; 2019. https://doi.org/10.1201/9781315202990

Downloads

Download data is not yet available.