Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Morphological descriptor-based multivariate approaches for comprehensive genetic diversity analysis in soybean (Glycine max L. Merrill)

DOI
https://doi.org/10.14719/pst.8730
Submitted
7 April 2025
Published
10-11-2025
Versions

Abstract

Assessment of genetic diversity in germplasm collections is crucial for effective genetic improvement in soybean (Glycine max L. Merrill). The present study evaluated 165 soybean germplasm lines, including five checks, at JNKVV, Jabalpur, during Kharif 2022, Rabi-Summer 2023 and Kharif 2023 to characterize morphological variability based on the DUS guidelines. A thorough statistical analysis involving phylogenetic assessment, hierarchical clustering and principal component analysis (PCA) was accomplished to elucidate the genetic divergence and trait-based associations among the genotypes. Phylogenetic analysis delineated the germplasm into six distinct groups, indicating substantial genetic differentiation. Genotypes NRC 181, VLS 89, JS 20-34 and NRC 138 formed an independent cluster, suggesting unique allelic variation. Hierarchical clustering established this genetic stratification, identifying distinct sub-clusters associated with differential morphological traits. PCA revealed five principal components explaining 55.85 % of the total phenotypic variation, with PC1 contributing 17.3 %, predominantly associated with flower colour and hypocotyl anthocyanin pigmentation. Genotypes such as EC 313915, GW 89, CAT 489A and GW 108 exhibited stable performance and significant contributions to multiple trait expressions. The PCA-biplot, based on the first two principal components and overlaid with six clusters, effectively distinguished genotype groups, confirming the robustness of classification. The Mantel test showed a strong correlation (r = 0.6161, p = 0.001) between distance matrices from PCA and hierarchical clustering, validating the consistency of the analysis. The investigation underscores the genetic variability within the evaluated soybean germplasm. It reinforces the importance of integrating morphological characterization with multivariate statistical approaches for strategic genotype selection in soybean improvement programs.

References

  1. 1. Amrate PK. Survey and present status of soybean diseases in central India. International Journal of Bioresource and Stress Management. 2024;15(5):1-10. https://doi.org/10.23910/1.2024.5299
  2. 2. Mehra SH, Shrivastava MK, Amrate PK, Yadav RB. Studies on variability, correlation coefficient and path analysis for yield associated traits in soybean (Glycine max (L.) Merrill). Journal of Oilseeds Research. 2020;37(1):56-9. https://doi.org/10.56739/jor.v37i1.136390
  3. 3. Agarwal DK, Billore SD, Sharma AN, Dupare BU, Srivastava SK. Soybean: introduction, improvement, and utilization in India—problems and prospects. Agricultural Research. 2013;2(4):293-300. https://doi.org/10.1007/s40003-013-0088-0
  4. 4. Uikey S, Sharma S, Amrate PK, Shrivastava MK. Identification of rich oil-protein and disease resistance genotypes in soybean (Glycine max (L.) Merrill). International Journal of Bioresource and Stress Management. 2022;13(5):497-506. https://doi.org/10.23910/1.2022.2478
  5. 5. Banerjee J, Shrivastava MK, Singh Y, Amrate PK. Estimation of genetic divergence and proximate composition in advanced breeding lines of soybean (Glycine max (L.) Merrill). Environment and Ecology. 2023;41(3C):1960-8. https://doi.org/10.60151/envec/VYWE5744
  6. 6. Malila Y, Owolabi IO, Chotanaphuti T, Sakdibhornssup N, Elliott CT, Visessanguan W, et al. Current challenges of alternative proteins as future foods. NPJ Science of Food. 2024;8(1):53. https://doi.org/10.1038/s41538-024-00291-w
  7. 7. Aschemann-Witzel J, Gantriis RF, Fraga P, Perez-Cueto FJ. Plant-based food and protein trend from a business perspective: markets, consumers, and the challenges and opportunities in the future. Critical Reviews in Food Science and Nutrition. 2021;61(18):3119-28. https://doi.org/10.1080/10408398.2020.1793730
  8. 8. Porritt J, McCarthy M. The global protein challenge. Stockholm Resilience Centre; 2015.
  9. 9. Richter CK, Skulas-Ray AC, Champagne CM, Kris-Etherton PM. Plant protein and animal proteins: do they differentially affect cardiovascular disease risk? Advances in Nutrition. 2015;6(6):712-28. https://doi.org/10.3945/an.115.009654
  10. 10. Qin P, Wang T, Luo Y. A review on plant-based proteins from soybean: health benefits and soy product development. Journal of Agriculture and Food Research. 2022;7:100265. https://doi.org/10.1016/j.jafr.2021.100265
  11. 11. Messina M. Perspective: soybeans can help address the caloric and protein needs of a growing global population. Frontiers in Nutrition. 2022;9:909464. https://doi.org/10.3389/fnut.2022.909464
  12. 12. Anonymous. ICAR-IISR Indore statistics; 2024.
  13. 13. Ghiday T, Sentayehu A. Genetic divergence analysis on some soybean (Glycine max (L.) Merrill) genotypes grown in Pawe, Ethiopia. American-Eurasian Journal of Agriculture and Environmental Science. 2015;15(10):1927-33.
  14. 14. Ramteke R, Murlidharan P, Shivakumar M, Gireesh C, Ramesh SV. Morpho-agronomic characterization of Indian soybean for grouping and varietal protection. Indian Journal of Genetics and Plant Breeding. 2015;75(3):382-5. https://doi.org/10.5958/0975-6906.2015.00060.7
  15. 15. Pachori S, Tiwari S, Shrivastava MK, Amrate PK, Thakur S, Gupta S. Unveiling genetic diversity in soybean germplasm: a comprehensive analysis through DUS characteristics. Electronic Journal of Plant Breeding. 2023;14(4):1541-8. https://doi.org/10.37992/2023.1404.173
  16. 16. Patel T, Babbar A, Behera K, Anand KJ, Patel M, Kujur MJ, et al. Integrating diversity analysis and morphological characterization for strategic trait selection in advanced breeding lines of chickpea (Cicer arietinum L.). Legume Research-An International Journal. 2025; In press. https://doi.org/10.18805/LR-5468
  17. 17. Shilpashree N, Devi SN, Manjunathagowda DC, Muddappa A, Abdelmohsen SA, Tamam N, et al. Morphological characterization, variability and diversity among vegetable soybean (Glycine max L.) genotypes. Plants. 2021;10(4):671. https://doi.org/10.3390/plants10040671
  18. 18. Rani R, Raza G, Tung MH, Rizwan M, Ashfaq H, Shimelis H, et al. Genetic diversity and population structure analysis in cultivated soybean (Glycine max [L.] Merr.) using SSR and EST-SSR markers. PLoS One. 2023;18(5):e0286099. https://doi.org/10.1371/journal.pone.0286099
  19. 19. Malik MF, Ashraf MU, Qureshi AS, Khan MR. Investigation and comparison of some morphological traits of the soybean populations using cluster analysis. Pakistan Journal of Botany. 2011;43(2):1249-55.
  20. 20. Khan NA, Islam MS, Bhuiyan SH, Hasan KM, Hasan MK. Evaluation of yield contributing characters and cluster analysis of soybean genotypes. Algerian Journal of Biosciences. 2022;3(1):27-32. https://doi.org/10.57056/ajb.v3i1.52
  21. 21. Hegay S, Geleta M, Bryngelsson T, Asanaliev A, Garkava-Gustavsson L, Persson Hovmalm H, et al. Genetic diversity analysis in Phaseolus vulgaris L. using morphological traits. Genetic Resources and Crop Evolution. 2014;61:555-66. https://doi.org/10.1007/s10722-013-0056-3
  22. 22. Koh KY, Ahmad S, Lee JI, Suh GH, Lee CM. Hierarchical clustering on principal components analysis to detect clusters of highly pathogenic avian influenza subtype H5N6 epidemic across South Korean poultry farms. Symmetry. 2022;14(3):598. https://doi.org/10.3390/sym14030598
  23. 23. Diniz-Filho JA, Soares TN, Lima JS, Dobrovolski R, Landeiro VL, Telles MP, et al. Mantel test in population genetics. Genetics and Molecular Biology. 2013;36:475-85. https://doi.org/10.1590/S1415-47572013000400002
  24. 24. Massy WF. Principal components regression in exploratory statistical research. Journal of the American Statistical Association. 1965;60(309):234-56. https://doi.org/10.1080/01621459.1965.10480787
  25. 25. Jolliffe IT. Mathematical and statistical properties of sample principal components. New York: Springer; 1986. p. 23-49. https://doi.org/10.1007/978-1-4757-1904-8_3
  26. 26. Getahun T, Tesfaye K, Fikre A, Haileslassie T, Chitikineni A, Thudi M, et al. Molecular genetic diversity and population structure in Ethiopian chickpea germplasm accessions. Diversity. 2021;13(6):247. https://doi.org/10.3390/d13060247
  27. 27. Thakur R, Kumari V, Kumari J, Khajuria D, Kumari A, Kapoor R. DUS characterization of indigenous and exotic soybean (Glycine max (L.) Merrill) germplasm in north western Himalayas. Himachal Journal of Agricultural Research. 2024:190-200.
  28. 28. Yeshitila M, Gedebo A, Tesfaye B, Degu HD. Agro-morphological genetic diversity assessment of Amaranthus genotypes from Ethiopia based on qualitative traits. CABI Agriculture and Bioscience. 2024;5(1):95. https://doi.org/10.1186/s43170-024-00288-1
  29. 29. Andrew-Peter-Leon MT, Ramchander S, Kumar KK, Muthamilarasan M, Pillai MA. Assessment of efficacy of mutagenesis of gamma-irradiation in plant height and days to maturity through expression analysis in rice. PLoS One. 2021;16(1):e0245603. https://doi.org/10.1371/journal.pone.0245603
  30. 30. Zanklan AS, Becker HC, Sørensen M, Pawelzik E, Grüneberg WJ. Genetic diversity in cultivated yam bean (Pachyrhizus spp.) evaluated through multivariate analysis of morphological and agronomic traits. Genetic Resources and Crop Evolution. 2018;65:811-43. https://doi.org/10.1007/s10722-017-0582-5
  31. 31. Kachare S, Tiwari S, Tripathi N, Thakur VV. Assessment of genetic diversity of soybean (Glycine max) genotypes using qualitative traits and microsatellite markers. Agricultural Research. 2020;9(1):23-34. https://doi.org/10.1007/s40003-019-00412-y

Downloads

Download data is not yet available.