Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Enhancing genetic variability in Solanum surattense (Burm.f.) through EMS and gamma ray-induced mutagenesis

DOI
https://doi.org/10.14719/pst.8734
Submitted
8 April 2025
Published
16-07-2025

Abstract

Solanum surattense Burm.f. is an important medicinal plant with limited genetic variability due to presence of heavy thorns. The objective of this study represents the first report on the induction of mutation in Solanum surattense Burm.f. using EMS and gamma ray irradiation to enhance its genetic variation. A total of 100 pre-soaked Kantakari seeds were treated with varying concentrations of EMS (0.2 %, 0.4 %, 0.6 %, 0.8 % and 1 %), gamma rays (50 Gy, 100 Gy, 150 Gy, 200 Gy and 250 Gy) and their combined treatments (50 Gy + 0.2 % EMS, 100 Gy + 0.4 % EMS, 50 Gy + 0.6 % EMS, 200 Gy + 0.8 % EMS and 250 Gy + 1 % EMS). The results revealed a progressive decline in germination rate, survival percentage, root length (cm) and shoot length (cm) with increasing doses of both individual and combined mutagens in the M1 generation. The LD50 values were determined as 0.8 % EMS (47.48 %), 200 Gy gamma rays (46.47 %) and a combination treatment of 0.4 % EMS + 100 Gy (53.54 %). Mutation breeding using gamma rays, EMS and their combinations significantly influenced growth and yield parameters, in addition to, reducing thorn density. Among the tested treatments, the combination of 0.4 % EMS + 100 Gy (6.23, 5.42) and 200 Gy gamma rays (8.69, 7.31) was the most effective in reducing the number of thorns on both the upper and lower surfaces of the leaves. These findings suggest that mutation breeding through gamma irradiation and combination treatments holds great potential for developing high-yielding, low-thorn mutants of Kantakari, making it a valuable approach for future crop improvement programs.

References

  1. 1. Pharmacopoeias. The Ayurvedic Pharmacopoeia of India, Part-1, Vol. 1. Government of India, Ministry of Health and Family Welfare, Dept of I.S.M. & H.; 1999.
  2. 2. Parmar S, Gangwal A, Sheth N. Solanum xanthocarpum (yellow berried nightshade): A review. Der Pharmacia Lettre. 2010;2(4):373–83.
  3. 3. Loc NH, Anh NH, Khuyen LT, An TN. Effects of yeast extract and methyl jasmonate on the enhancement of solasodine biosynthesis in cell cultures of Solanum hainanense Hance. Journal of Bioscience and Biotechnology. 2014;3(1):1–6.
  4. 4. Patel K, Singh RB, Patel DK. Medicinal significance, pharmacological activities and analytical aspects of solasodine: A concise report of current scientific literature. Journal of Acute Disease. 2013;2(2):92–8. https://doi.org/10.1016/S2221-6189(13)60106-7
  5. 5. Revathi P, Parimelazhagan T. Traditional knowledge on medicinal plants used by the Irula tribe of Hasanur Hills, Erode District, Tamil Nadu, India. Ethnobotanical Leaflets. 2010;2010(2):4. https://opensiuc.lib.siu.edu/ebl/vol2010/iss2/4/
  6. 6. Narayanan MK, Anilkumar N, Balakrishnan V, Sivadasan M, Alfarhan HA, Alatar AA. Wild edible plants used by the Kattunaikka, Paniya and Kuruma tribes of Wayanad District, Kerala, India. Journal of Medicinal Plants Research. 2011;5(15):3520–9.
  7. 7. Chopra V. Mutagenesis: Investigating the process and processing the outcome for crop improvement. Current Science. 2005;89(2):353–9. https://www.jstor.org/stable/24110583
  8. 8. Laskar RA, Chaudhary C, Khan S, Chandra A. Induction of mutagenized tomato populations for investigation on agronomic traits and mutant phenotyping. Journal of the Saudi Society of Agricultural Sciences. 2018;17(1):51–60. https://doi.org/10.1016/j.jssas.2016.01.002
  9. 9. Baisakh B, Das TR, Nayak BK. Efficacy of physical and chemical mutagenic treatments for micro-mutants in urdbean. Journal of Food Legumes. 2011;24(2):106–9.
  10. 10. Sabetta W, Alba V, Blanco A, Montemurro C. sunTILL: a TILLING resource for gene function analysis in sunflower. Plant Methods. 2011;7(20):1–13. https://doi.org/10.1186/1746-4811-7-20
  11. 11. Talebi AB, Talebi AB, Shahrokhifar B. Ethyl methane sulphonate (EMS) induced mutagenesis in Malaysian rice (cv. MR219) for lethal dose determination. American Journal of Plant Sciences. 2012;3(12):1661–5. https://doi.org/10.4236/ajps.2012.312202
  12. 12. Finney DJ. Probit Analysis. Cambridge University Press; 1971. https://doi.org/10.1303/aez.33.339
  13. 13. Gomez KA, Gomez AA. Statistical Procedures for Agricultural Research-An International Rice Research Institute Book. New York: John Wiley & Sons Inc; 1984.
  14. 14. Gaul H. Mutagenic effects observable in the first-generation plant injury and lethality. Manual on Mutation Breeding. 1970:85–90.
  15. 15. Kovacs E, Keresztes A. Effect of gamma and UV-B/C radiation on plant cells. Micron. 2002;33(2):199–210. https://doi.org/10.1016/S0968-4328(01)00012-9
  16. 16. Aruna J, Prakash M, Kumar BS. Studies on effect of physical and chemical mutagens on seedling characters in brinjal (Solanum melongena L.). International Journal of Current Research. 2010;3:38-41.
  17. 17. Siddiqui MA, Khan IA, Khatri A. Induced quantitative variability by gamma rays and ethyl methane sulphonate alone and in combination in rapeseed (Brassica napus L.). Pakistan Journal of Botany. 2009;41(3):1189–95. https://pakbs.org/pjbot/PDFs/41(3)/PJB41(3)1189.pdf
  18. 18. Prabha R, Dixit V, Chaudhary BR. Sodium azide-induced mutagenesis in fenugreek (Trigonella foenum-graecum Linn). Legume Research. 2010;33(4):235–41.
  19. 19. Hassan N, Laskar RA, Raina A, Khan S. Maleic hydrazide induced variability in fenugreek (Trigonella foenum-graecum L.) cultivars CO1 and Rmt-1. Research & Reviews: Journal of Botanical Sciences. 2018;7(1):19–28.
  20. 20. Laskar RA, Amin R, Khan S. Evaluation of optimal doses for gamma rays and hydrazine hydrates in lentil genotypes. Trends in Biosciences. 2017;10(27):5822–5.
  21. 21. Bhosle SS, Kothekar VS. Mutagenic efficiency and effectiveness in cluster bean (Cyamopsis tetragonoloba (L.) Taub). Journal of Phytology. 2010;2(6):21–7. https://core.ac.uk/download/pdf/236017361.pdf
  22. 22. Sofia S, Reddy DM, Reddy KH, Latha P, Reddy BR. Effect of gamma rays, ethyl methane sulphonate and sodium azide on seedling traits, fertility and varietal sensitivity in mungbean (Vigna radiata (L.) Wilczek). International Journal of Chemical Studies. 2020;8(4):1109–4. https://doi.org/10.22271/chemi.2020.v8.i4i.9749
  23. 23. Bashir S, Wani AA, Nawchoo IA. Mutagenic sensitivity of gamma rays, EMS and sodium azide in Trigonella foenum-graecum L. Science Research Reporter. 2013;3(1):20–6.
  24. 24. Raina A, Khursheed S, Khan S. Optimization of mutagen doses for gamma rays and sodium azide in cowpea genotypes. Trends in Biosciences. 2018;11(13):2386–9.
  25. 25. Samanta SK, Ghose SK, Sen S, Bhattacharyya NK. Association between berry characters and solasodine content of Solanum khasianum. Planta Medica. 1983;48(6):94–6. https://doi.org/10.1055/s-2007-969895
  26. 26. Khan R, Punia S, Ram M, Gupta D, Bhatt B, Ahmad S, et al. Determination of lethal dose (LD50) and sensitivity of fenugreek (Trigonella foenum-graecum) to sodium azide for induction of mutation. The Indian Journal of Agricultural Sciences. 2024;94(4):440–3. https://doi.org/10.56093/ijas.v94i4.134877
  27. 27. Amir K, Hussain S, Shuaib M, Hussain F, Urooj Z, Khan WM, et al. Effect of gamma irradiation on okra (Abelmoschus esculentus L.). Acta Ecologica Sinica. 2018;38(5):368–73. https://doi.org/10.1016/j.chnaes.2018.02.002
  28. 28. Singh SP, Prasad JP, Agrawal RK, Shahi JP. Induced genetic variability for protein content, yield and yield components in lentil (Lens culinaris Medik). Madras Agricultural Journal. 2006;93(7):155–9. https://doi.org/10.29321/MAJ.10.100743
  29. 29. Subramaniam R, Kumar VS. Ethyl methane sulphonate (EMS)-mediated mutagenesis induces genetic and morphological variations in eggplant (Solanum melongena L.). International Journal of Plant Biology. 2023;14(3):714–28. https://doi.org/10.3390/ijpb14030053
  30. 30. Rahman A, Das ML. Evaluation of improved varieties through induced mutations. In: Proceedings of Third FAO/IAEA Res. Co and Meet on Induced Mutations for Sesame Improvement; 6-10 April; Bangkok, Thailand; 1998.
  31. 31. Karthika R, Subha L. Fixation of lethal dose 50 and the performance of M1 population in two soybean varieties. Legume Research. 2007;30(1):49–52.
  32. 32. Makeen K, Babu S. Mutagenic effectiveness and efficiency of gamma rays, sodium azide and their synergistic effects in urd bean (Vigna mungo L.). World Journal of Agricultural Sciences. 2010;6(2):234–7.
  33. 33. Pushparajan G, Sanoop S, Harinarayanan MK. Effect of gamma rays on yield-attributing characters of okra (Abelmoschus esculentus L.). International Journal of Advanced Research. 2014;2:535–40.
  34. 34. Shahab D, Gulfishan M, Khan AA, Vágvölgyi C, Ansari MY, Yunus M. Comparative mutagenic effectiveness and efficiency of physical and chemical mutagens in Solanum melongena L. variety Pusa Uttam. Biomedical Journal of Scientific and Technical Research. 2018;7(4):6056–60.
  35. 35. Singh P, Singh AK, Singh BK, Pal AK, Chaubey T, Singh RK, et al. Evaluation of physical and chemical mutagens on various genotypes of brinjal (Solanum melongena L.) in M2 generation. Vegetable Science. 2022;49(1):47–51. https://doi.org/10.61180/vegsci.2022.v49.i1.07
  36. 36. Ashadevi R, Koundinya AV, Chattopadhyay SB. An estimation of effective mutagen doses, induced genetic variation and characters association in M2 generation of okra. International Journal of Current Microbiology and Applied Sciences. 2017;6(5):2209–19. https://doi.org/10.20546/ijcmas.2017.605.247
  37. 37. Zafar SA, Aslam M, Albaqami M, Ashraf A, Hassan A, Iqbal J, et al. Gamma rays induced genetic variability in tomato (Solanum lycopersicum L.) germplasm. Saudi Journal of Biological Sciences. 2022;29(5):3300–7. https://doi.org/10.1016/j.sjbs.2022.02.008

Downloads

Download data is not yet available.