Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Seaweeds as sustainable alternative for enhancing agriculture

DOI
https://doi.org/10.14719/pst.8735
Submitted
8 April 2025
Published
14-10-2025

Abstract

The existing dominance of chemical inputs in agriculture has pushed the invaluable soil resource to its brink. The adoption of high yielding varieties by farmers worldwide has demanded the use of chemical fertilizers and plant protection agents. While these practices have played a crucial role in achieving food security, they have also given rise to rather serious complications, including the deterioration of soil health, the presence of chemical residues in agricultural produce and environmental pollution. This has necessitated the formulation of efficient alternative inputs that help agriculturists to achieve ample crop yields while ensuring the sustenance of soil health and productivity. The vast sea of seaweeds is an excellent candidate that suits best for the current scenario, being a wholesome provider for plant health and productivity. The presence of plant growth regulators and several bioactive compounds that can stimulate vigorous plant growth, elicit plant defense mechanisms against biotic and abiotic stressors and enhance yield are some of the promising reasons which make seaweeds a suitable biostimulant for crop production. This review is an attempt to enrich the existing knowledge on seaweeds by exploring the agricultural benefits of seaweeds and elucidating the underlying mechanisms through which these benefits are realized.

References

  1. 1. Thorat JC, More AL. The effect of chemical fertilizers on environment and human health. Int J Sci Dev Res. 2022;7(2):99‑105.
  2. 2. Singh R. The hidden dangers of chemical fertilizers. Int J Multidiscip Res. 2024;6(3):23134.
  3. 3. Jote CA. The impacts of using inorganic chemical fertilizers on the environment and human health. Org Med Chem Int J. 2023;13:555864.
  4. 4. Pahalvi HN, Rafiya L, Rashid S, Nisar B, Kamili AN. Chemical fertilizers and their impact on soil health. In: Dar GH, Bhat RA, Mehmood MA, Hakeem KR, editors. Microbiota and Biofertilizers, Vol 2 [Internet]. Cham: Springer International Publishing; 2021. p. 1‑20. https://link.springer.com/10.1007/978-3-030-61010-4_1
  5. 5. Chali G, Genati D. Review on organic fertilizer and its roles in sustaining soil fertility in Ethiopia. development. 2021;12(4). https://doi.org/10.7176/JNSR/12-4-02
  6. 6. Parab A, Shankhadarwar S. Growth enhancement of agricultural crops using seaweed liquid fertilizer. Plant Sci Today [Internet]. 2022. http://horizonepublishing.com/journals/index.php/PST/article/view/1439
  7. 7. Nagappan S, Das P, AbdulQuadir M, Thaher M, Khan S, Mahata C, et al. Potential of microalgae as a sustainable feed ingredient for aquaculture. J Biotechnol. 2021;341:1‑20. https://doi.org/10.1016/j.jbiotec.2021.09.003
  8. 8. Mamede M, Cotas J, Bahcevandziev K, Pereira L. Seaweed polysaccharides in agriculture: A next step towards sustainability. Applied Sciences [Internet]. 2023;13(11):6594. https://doi.org/10.3390/app1311659
  9. 9. Stirk WA, Rengasamy KRR, Kulkarni MG, Van Staden J. Plant biostimulants from seaweed: An overview. In: Geelen D, Xu L, editors. The Chemical Biology of Plant Biostimulants [Internet]. 1st ed. Wiley; 2020. p. 31‑55. https://onlinelibrary.wiley.com/doi/10.1002/9781119357254.ch2
  10. 10. Chaturvedi S, Kulshrestha S, Bhardwaj K. Role of seaweeds in plant growth promotion and disease management. In: New and Future Developments in Microbial Biotechnology and Bioengineering [Internet]. Elsevier; 2022. p. 217‑38. https://linkinghub.elsevier.com/retrieve/pii/B9780323855792000071
  11. 11. Cotas J, Pacheco D, Araujo GS, Valado A, Critchley AT, Pereira L. On the health benefits vs risks of seaweeds and their constituents: The curious case of the polymer paradigm. Marine Drugs [Internet]. 2021;19(3):164. https://doi.org/10.3390/md19030164
  12. 12. Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, et al. Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul. 2009;28(4):386‑99. https://doi.org/10.1007/s00344-009-9103-x
  13. 13. Fleurence J. Biostimulant Potential of Ascophyllum nodosum extracts. In: Ramawat N, Bhardwaj V, editors. Biostimulants: Exploring sources and applications [Internet]. Singapore: Springer Nature; 2022. p. 31‑49. https://link.springer.com/10.1007/978-981-16-7080-0_2
  14. 14. Tejasree A, Mirza A, Joka VS. Deciphering nature’s secret of Ascophyllum nodosum extract as a biostimulant on horticultural crops: A review. J Exp Agric Int. 2024;46(6):417‑27. https://doi.org/10.9734/jeai/2024/v46i62494
  15. 15. Ali O, Ramsubhag A, Jayaraman J. Biostimulatory activities of Ascophyllum nodosum extract in tomato and sweet pepper crops in a tropical environment. PLOS ONE. 2019;14(5):e0216710. https://doi.org/10.1371/journal.pone.0216710
  16. 16. Khedia J, Dangariya M, Nakum AK, Agarwal P, Panda A, Parida AK, et al. Sargassum seaweed extract enhances Macrophomina phaseolina resistance in tomato by regulating phytohormones and antioxidative activity. J Appl Phycol. 2020;32(6):4373‑84. https://doi.org/10.1007/s10811-020-02263-5
  17. 17. Khompatara K, Pettongkhao S, Kuyyogsuy A, Deenamo N, Churngchow N. Enhanced resistance to leaf fall disease caused by Phytophthora palmivora in rubber tree seedling by Sargassum polycystum extract. Plants. 2019;8(6):168. https://doi.org/10.3390/plants8060168
  18. 18. Agarwal PK, Dangariya M, Agarwal P. Seaweed extracts: Potential biodegradable, environmentally friendly resources for regulating plant defence. Algal Res. 2021;58:102363. https://doi.org/10.1016/j.algal.2021.102363
  19. 19. Sharma S, Chen C, Khatri K, Rathore MS, Pandey SP. Gracilaria dura extract confers drought tolerance in wheat by modulating abscisic acid homeostasis. Plant Physiol Biochem. 2019;136:143‑54. https://doi.org/10.1016/j.plaphy.2019.01.015
  20. 20. Di Stasio E, Cirillo V, Raimondi G, Giordano M, Esposito M, Maggio A. Osmo-Priming with seaweed extracts enhances yield of salt-stressed tomato plants. Agronomy. 2020;10(10):1559. https://doi.org/10.3390/agronomy10101559
  21. 21. Raghunandan BL, Vyas RV, Patel HK, Jhala YK. Perspectives of seaweed as organic fertilizer in agriculture. In: Panpatte DG, Jhala YK, editors. Soil Fertility Management for Sustainable Development [Internet]. Singapore: Springer; 2019. p. 267‑89. http://link.springer.com/10.1007/978-981-13-5904-0_13
  22. 22. Laishram J, Saxena K, Maikhuri R, Rao K. Soil quality and soil health: A review. Int J Ecol Environ Sci. 2012;38.
  23. 23. Kaur I. Seaweeds: Soil health boosters for sustainable agriculture. In: [Internet] Springer; 2020. p. 163‑82. https://doi.org/10.1007/978-3-030-44364-1_10
  24. 24. Benítez García I, Dueñas Ledezma AK, Martínez Montaño E, Salazar Leyva JA, Carrera E, Osuna Ruiz I. Identification and quantification of plant growth regulators and antioxidant compounds in aqueous extracts of Padina durvillaei and Ulva lactuca. Agronomy. 2020;10(6):866. https://doi.org/10.3390/agronomy10060866
  25. 25. Anderson RJ, Bolton JJ, Stegenga H. Using the biogeographical distribution and diversity of seaweed species to test the efficacy of marine protected areas in the warm‑temperate Agulhas Marine Province, South Africa. Divers Distrib [Internet]. 2009. https://api.semanticscholar.org/CorpusID:85982634
  26. 26. Eyras MC, Defossé GE, Dellatorre FG. Seaweed compost as an amendment for horticultural soils in Patagonia, Argentina. Compost Sci Util. 2008;16:119‑24. https://doi.org/10.1080/1065657X.2008.10702366
  27. 27. Renaut S, Masse J, Norrie JP, Blal B, Hijri M. A commercial seaweed extract structured microbial communities associated with tomato and pepper roots and significantly increased crop yield. Microb Biotechnol. 2019;12(6):1346‑58. https://doi.org/10.1111/1751-7915.13473
  28. 28. Wang Y, Xiang L, Wang S, Wang X, Chen X, Mao Z. Effects of seaweed fertilizer on the Malus hupehensis Rehd. seedlings growth and soil microbial numbers under continue cropping. Acta Ecol Sin. 2017;37(3):180‑6. https://doi.org/10.1016/j.chnaes.2017.01.004
  29. 29. Kuwada K, Wamocho LS, Utamura M, Matsushita I, Ishii T. Effect of red and green algal extracts on hyphal growth of arbuscular mycorrhizal fungi, and on mycorrhizal development and growth of papaya and passionfruit. Agron J. 2006;98(5):1340‑4. https://doi.org/10.2134/AGRONJ2005.0354
  30. 30. Khan W, Zhai R, Souleimanov A, Critchley AT, Smith DL, Prithiviraj B. Commercial extract of Ascophyllum nodosum improves root colonization of alfalfa by its bacterial symbiont Sinorhizobium meliloti. Commun Soil Sci Plant Anal. 2012;43(18):2425‑36. https://doi.org/10.1007/s10811-021-02387-2
  31. 31. Wang M, Chen L, Li Y, Chen L, Liu Z, Wang X, et al. Responses of soil microbial communities to a short‑term application of seaweed fertilizer revealed by deep amplicon sequencing. Appl Soil Ecol. 2018;125:288‑96. https://doi.org/10.1016/j.apsoil.2018.02.013
  32. 32. Zodape ST. Central Salt and Marine Chemicals Research Institute. Seaweeds as a biofertilizer. J Sci Ind Res. 2001;60:378‑82.
  33. 33. Basavaraja PK, Yogendra ND, Zodape ST, Prakash R, Ghosh A. Effect of seaweed sap as foliar spray on growth and yield of hybrid maize. J Plant Nutr. 2018;41(14):1851‑61. https://doi.org/10.1080/01904167.2018.1463381
  34. 34. Rathore SS, Chaudhary DR, Boricha GN, Ghosh A, Bhatt BP, Zodape ST, et al. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. South Afr J Bot. 2009;75(2):351‑5. https://doi.org/10.1016/j.sajb.2008.10.009
  35. 35. Di Stasio E, Rouphael Y, Colla G, Raimondi G, Giordano M, Pannico A, et al. The influence of Ecklonia maxima seaweed extract on growth, photosynthetic activity and mineral composition of Brassica rapa L. subsp. sylvestris under nutrient stress conditions. Eur J Hortic Sci. 2018;82(6):286‑93. https://doi.org/10.17660/ejhs.2017/82.6.3
  36. 36. Ghosh A, Shankar T, Malik G, Banerjee M, Ghosh A. Effect of seaweed extracts on the growth, yield and nutrient uptake of black gram (Vigna mungo L.) in the red and lateritic belt of West Bengal. Int J Chem Stud. 2020;8(3):799‑802. https://doi.org/10.22271/chemi.2020.v8.i3j.9300
  37. 37. Mirparsa T, Ganjali HR, Dahmardeh M. The effect of bio fertilizers on yield and yield components of sunflower oil seed and nut. 2018;5:46‑49.
  38. 38. Chen D, Li Z, Yang J, Zhou W, Wu Q, Shen H, et al. Seaweed extract enhances drought resistance in sugarcane via modulating root configuration and soil physicochemical properties. Industrial Crops and Products [Internet]. 2023;194:116321. https://doi.org/10.1016/j.indcrop.2023.116321
  39. 39. Jebasingh SEJ, Lakshmikandan M, Vasanthakumar P, Sivaraman K. Improved seedling growth and seed germination in legume crop Vigna mungo (L.) Hepper utilizing marine macro algal extracts. Proc Natl Acad Sci India Sect B Biol Sci. 2015;85(2):643‑51. https://doi.org/10.1007/s40011-014-0374-z
  40. 40. Leindah Devi N, Mani S. Effect of seaweed saps Kappaphycus alvarezii and Gracilaria on growth, yield and quality of rice. Indian J Sci Technol. https://doi.org/10.17485/ijst/2015/v8i19/47610
  41. 41. Rao GMN, Chatterjee R. Effect of seaweed liquid fertilizer from Gracilaria Textorii and Hypnea musciformis on seed germination and productivity of some vegetable crops. Univers J Plant Sci. 2014;2(7):115‑20. https://doi.org/10.13189/ujps.2014.020701
  42. 42. Hong DD, Hien HM, Son PN. Seaweeds from Vietnam used for functional food, medicine and biofertilizer. J Appl Phycol. 2007;19(6):817‑26. https://doi.org/10.1007/s10811-007-9228-x
  43. 43. Rengasamy KRR, Kulkarni MG, Stirk WA, Van Staden J. Eckol – a new plant growth stimulant from the brown seaweed Ecklonia maxima. J Appl Phycol. 2015;27(1):581‑7. https://doi.org/10.1007/s10811-014-0337-z
  44. 44. Hernández‑Herrera RM, Santacruz‑Ruvalcaba F, Zañudo‑Hernández J, Hernández‑Carmona G. Activity of seaweed extracts and polysaccharide-enriched extracts from Ulva lactuca and Padina gymnospora as growth promoters of tomato and mung bean plants. J Appl Phycol. 2016;28(4):2549‑60. https://doi.org/10.1007/s10811-015-0781-4
  45. 45. Shukla PS, Borza T, Critchley AT, Prithiviraj B. Carrageenans from red seaweeds as promoters of growth and elicitors of defense response in plants. Front Mar Sci. https://doi.org/10.3389/fmars.2016.00081
  46. 46. Vera J, Castro J, Gonzalez A, Moenne A. Seaweed polysaccharides and derived oligosaccharides stimulate defense responses and protection against pathogens in plants. Mar Drugs. 2011;9(12):2514‑25. https://doi.org/10.3390/md9122514
  47. 47. Saucedo S, Contreras RA, Moenne A. Oligo‑carrageenan kappa increases C, N and S assimilation, auxin and gibberellin contents, and growth in Pinus radiata trees. J For Res. 2015;26(3):635‑40. https://doi.org/10.1007/s11676-015-0061-9
  48. 48. Pacheco D, Cotas J, Domingues A, Ressurreição S, Bahcevandziev K, Pereira L. Chondracanthus teedei var. lusitanicus: the nutraceutical potential of an unexploited marine resource. Mar Drugs. 2021;19(10):570. https://doi.org/10.3390/md19100570
  49. 49. Lahaye M, Robic A. Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules. 2007;8(6):1765‑74. https://doi.org/10.1021/bm061185q
  50. 50. González A, Castro J, Vera J, Moenne A. Seaweed oligosaccharides stimulate plant growth by enhancing carbon and nitrogen assimilation, basal metabolism, and cell division. J Plant Growth Regul. 2013;32(2):443‑8. https://doi.org/10.1007/s00344-012-9309-1
  51. 51. Khan ZH, Khan MMA, Aftab T, Idrees M, Naeem M. Influence of alginate oligosaccharides on growth, yield and alkaloid production of opium poppy (Papaver somniferum L.). Front Agric China. 2011;5(1):122‑7. https://doi.org/10.1007/s11703-010-1056-0
  52. 52. Di Filippo‑Herrera DA. Effect of fucoidan and alginate on germination and growth of mung bean seedling. Hidrobiológica. 2022;33(3):353‑63. https://doi.org/10.1007/s10811-018-1680-2
  53. 53. Mzibra A, Aasfar A, El Arroussi H, Khouloud M, Dhiba D, Kadmiri IM, et al. Polysaccharides extracted from Moroccan seaweed: a promising source of tomato plant growth promoters. J Appl Phycol. 2018;30(5):2953‑62. https://doi.org/10.1007/s10811-018-1421-6
  54. 54. Ragan MA. Phlorotannins, brown algal polyphenols. Prog Phycol Res. 1986;4:129‑241.
  55. 55. Choulot M, Michalak I, Jing L, Szymczycha‑Madeja A, Wełna M, Bourgougnon N, et al. The enzyme-assisted extraction of compounds of interest in agriculture: case study of the red seaweed Solieria chordalis (C. Agardh) J. Agardh. Algal Res. 2023;75:103239. https://doi.org/10.1016/j.algal.2023.103239
  56. 56. Mondal S, Panda D. Seaweed as source of plant growth promoters and bio‑fertilizers. In: Ravishankar G, Ambati RR, editors. Handbook of Algal Technologies and Phytochemicals [Internet]. CRC Press; 2019. p. 111‑21.
  57. 57. Dumale J, Gamoso GR, Manangkil J, Divina C. Detection and quantification of auxin and gibberellic acid in Caulerpa racemosa. Int J Agric Technol. 2018;14:653‑60.
  58. 58. Ertani A, Francioso O, Tinti A, Schiavon M, Pizzeghello D, Nardi S, et al. Evaluation of seaweed extracts from Laminaria and Ascophyllum nodosum spp. as biostimulants in Zea mays L. using a combination of chemical, biochemical and morphological approaches. Front Plant Sci. 2018;9:428. https://doi.org/10.3389/fpls.2018.00428
  59. 59. Michalak I, Górka B, Wieczorek PP, Rój E, Lipok J, Łęska B, et al. Supercritical fluid extraction of algae enhances levels of biologically active compounds promoting plant growth. Eur J Phycol. 2016;51(3):243‑52. https://doi.org/10.1080/09670262.2015.1134813
  60. 60. Stirk WA, Novák O, Hradecká V, Pěnčík A, Rolčík J, Strnad M, et al. Endogenous cytokinins, auxins and abscisic acid in Ulva fasciata (Chlorophyta) and Dictyota humifusa (Phaeophyta): towards understanding their biosynthesis and homoeostasis. Eur J Phycol. 2009;44(2):231‑40. https://doi.org/10.1111/j.1529-8817.2010.00898.x
  61. 61. Prasad K, Das AK, Oza MD, Brahmbhatt H, Siddhanta AK, Meena R, et al. Detection and quantification of some plant growth regulators in a seaweed‑based foliar spray employing a mass spectrometric technique sans chromatographic separation. J Agric Food Chem. 2010;58(8):4594‑601. https://doi.org/10.1021/jf904500e
  62. 62. Yokoya NS, Stirk WA, Van Staden J, Novák O, Turečková V, Pěnčík A, et al. Endogenous cytokinins, auxins, and abscisic acid in red algae from Brazil. J Phycol. 2010;46(6):1198‑205. https://doi.org/10.1111/j.1529-8817.2010.00898.x
  63. 63. Gupta V, Kumar M, Brahmbhatt H, Reddy CRK, Seth A, Jha B. Simultaneous determination of different endogenetic plant growth regulators in common green seaweeds using dispersive liquid–liquid microextraction method. Plant Physiol Biochem. 2011;49(11):1259‑63. https://doi.org/10.1016/j.plaphy.2011.08.004
  64. 64. Rajabiyan A, Ahmady AZ, Izadi M, Kardani F. Cost‑effective phytohormone extraction of Sargassum swartzii from the Persian Gulf using magnetic ionic liquid. 2024? https://doi.org/10.2174/012772574X315517240626065435
  65. 65. Stirk WA, Tarkowská D, Turečová V, Strnad M, Van Staden J. Abscisic acid, gibberellins and brassinosteroids in Kelpak®, a commercial seaweed extract made from Ecklonia maxima. J Appl Phycol. 2014;26(1):561‑7. https://doi.org/10.1007/s10811-013-0062-z
  66. 66. Jaulneau V, Lafitte C, Jacquet C, Fournier S, Salamagne S, Briand X, et al. Ulvan, a sulfated polysaccharide from green algae, activates plant immunity through the jasmonic acid signaling pathway. J Biomed Biotechnol. 2010;2010:1‑11. https://doi.org/10.1155/2010/525291
  67. 67. Tran TLC, Callahan DL, Islam MT, Wang Y, Arioli T, Cahill D. Comparative metabolomic profiling of Arabidopsis thaliana roots and leaves reveals complex response mechanisms induced by a seaweed extract. Front Plant Sci. 2023;14:1114172. https://doi.org/10.3389/fpls.2023.1114172
  68. 68. Shukla PS, Borza T, Critchley AT, Prithiviraj B. Seaweed‑based compounds and products for sustainable protection against plant pathogens. Mar Drugs. 2021;19(2):59. https://doi.org/10.3390/md19020059
  69. 69. Mercier L, Lafitte C, Borderies G, Briand X, Esquerré‑Tugayé M, Fournier J. The algal polysaccharide carrageenans can act as an elicitor of plant defence. New Phytol. 2001;149(1):43‑51. https://doi.org/10.1046/J.1469-8137.2001.00011.X
  70. 70. Klarzynski O, Plesse B, Joubert JM, Yvin JC, Kopp M, Kloareg B, et al. Linear β‑1,3 glucans are elicitors of defense responses in tobacco. Plant Physiol. 2000;124(3):1027‑38. https://doi.org/10.1104/pp.124.3.1027
  71. 71. Klarzynski O, Descamps V, Plesse B, Yvin JC, Kloareg B, Fritig B. Sulfated fucan oligosaccharides elicit defense responses in tobacco and local and systemic resistance against tobacco mosaic virus. Mol Plant‑Microbe Interact. 2003;16(2):115‑22. https://doi.org/10.1094/MPMI.2003.16.2.115
  72. 72. Sano Y. Antiviral activity of alginate against infection by tobacco mosaic virus. Carbohydr Polym. 1999;38(2):183‑6. https://doi.org/10.1016/S0144-8617(98)00119-2
  73. 73. Oliveira IC, Brears T, Knight TJ, Clark A, Coruzzi GM. Overexpression of cytosolic glutamine synthetase. Relation to nitrogen, light, and photorespiration. Plant Physiol. 2002;129(3):1170‑80. https://doi.org/10.1104/pp.020013
  74. 74. Russell BL, Rathinasabapathi B, Hanson AD. Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. Plant Physiol. 1998;116(2):859‑65. https://doi.org/10.1104/pp.116.2.859
  75. 75. Fan D, Hodges DM, Critchley AT, Prithiviraj B. A commercial extract of brown macroalga (Ascophyllum nodosum) affects yield and the nutritional quality of spinach in vitro. Commun Soil Sci Plant Anal. 2013;44(12):1873‑84. https://doi.org/10.1080/00103624.2013.790404
  76. 76. Elansary HO, Yessoufou K, Abdel‑Hamid AME, El‑Esawi MA, Ali HM, Elshikh MS, et al. Seaweed extracts enhance Salam turfgrass performance during prolonged irrigation intervals and saline shock. Front Plant Sci. 2017;8:830. https://doi.org/10.3389/fpls.2017.00830
  77. 77. Carmody N, Goñi O, Łangowski Ł, O’Connell S. Ascophyllum nodosum extract biostimulant processing and its impact on enhancing heat stress tolerance during tomato fruit set. Front Plant Sci. 2020;11:807. https://doi.org/10.3389/fpls.2020.00807
  78. 78. Alscher RG. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot. 2002;53(372):1331‑41.
  79. 79. Ben Mrid R, Bouargalne Y, El Omari R, El Mourabit N, Nhiri M. Activities of carbon and nitrogen metabolism enzymes of sorghum (Sorghum bicolor Moench) during seed development. J Crop Sci Biotechnol. 2018;21(3):283‑9. https://doi.org/10.1007/s12892-017-0140-0
  80. 80. Noctor G. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot. 2002;53(372):1283‑304. https://doi.org/10.1093/jexbot/53.372.1283
  81. 81. Latique S, Mrid RB, Kabach I, Kchikich A, Sammama H, Yasri A, et al. Foliar application of Ulva rigida water extracts improves salinity tolerance in wheat (Triticum durum L.). Agronomy. 2021;11(2):265. https://doi.org/10.3390/agronomy11020265
  82. 82. Khan Z, Gul H, Rauf M, Arif M, Hamayun M, Ud‑Din A, et al. Sargassum wightii aqueous extract improved salt stress tolerance in Abelmoschus esculentus by mediating metabolic and ionic rebalance. Front Mar Sci. 2022;9:853272. https://doi.org/10.3389/fmars.2022.853272
  83. 83. Sariñana‑Aldaco O, Benavides‑Mendoza A, Robledo‑Olivo A, González‑Morales S. The biostimulant effect of hydroalcoholic extracts of Sargassum spp. in tomato seedlings under salt stress. Plants. https://doi.org/10.3390/plants11223180
  84. 84. El Boukhari MEM, Barakate M, Choumani N, Bouhia Y, Lyamlouli K. Ulva lactuca extract and fractions as seed priming agents mitigate salinity stress in tomato seedlings. Plants. 2021;10(6):1104. https://doi.org/10.3390/plants10061104
  85. 85. Banakar SN, PrasannaKumar MK, Mahesh HB, Parivallal PB, Puneeth ME, Gautam C, et al. Red‑seaweed biostimulants differentially alleviate the impact of fungicidal stress in rice (Oryza sativa L.). Sci Rep. 2022;12(1):5993. https://doi.org/10.1038/s41598-022-10010-8
  86. 86. Melo PCD, Collela CF, Sousa T, Pacheco D, Cotas J, Gonçalves AMM, et al. Seaweed‑based products and mushroom β‑glucan as tomato plant immunological inducers. Vaccines. 2020;8(3):524. https://doi.org/10.3390/vaccines8030524
  87. 87. Suthin T, Gb S, Rao S, Suji H, Suthin Raj T, Muthukumar A, et al. Induction of defence enzymes activities in rice plant treated by seaweed algae against Rhizoctonia solani Kuhn causing sheath blight of rice. 2019;210‑8.
  88. 88. Banakar SN, Prasannakumar MK, Parivallal PB, Pramesh D, Mahesh HB, Sarangi AN, et al. Rice‑Magnaporthe transcriptomics reveals host defense activation induced by red seaweed‑biostimulant in rice plants. Front Genet. 2023;14:1132561. https://doi.org/10.3389/fgene.2023.1132561
  89. 89. Tinte MM, Masike K, Steenkamp PA, Huyser J, Van Der Hooft JJJ, Tugizimana F. Computational metabolomics tools reveal metabolic reconfigurations underlying the effects of biostimulant seaweed extracts on maize plants under drought stress conditions. Metabolites. 2022;12(6):487. https://doi.org/10.3390/metabo12060487
  90. 90. Holdt SL, Kraan S. Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol. 2011;23(3):543‑97. https://doi.org/10.1007/s10811-010-9632-5
  91. 91. Evans FD, Critchley AT. Seaweeds for animal production use. J Appl Phycol. 2014;26(2):891‑9. https://doi.org/10.1007/s10811-013-0162-9
  92. 92. Johnson B, Tamilmani G, Divu D, Mojjada Suresh Kumar M, Megarajan S, Ghosh S, et al. Good Management Practices in Seaweed Farming. CMFRI Special Publication No 148, ICAR‑CMFRI, Kochi, India. 2023. http://eprints.cmfri.org.in/id/eprint/16954

Downloads

Download data is not yet available.