Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Cuticular wax composition and anatomical features of Cyperus rotundus L. in relation to herbicide uptake and translocation

DOI
https://doi.org/10.14719/pst.8763
Submitted
8 April 2025
Published
06-11-2025

Abstract

Cyperus rotundus is one of the sedges that is widely considered to be the world’s worst weed and its control is troublesome due to a variety of factors. The objective of this research was to analyze the chemical composition as well as its morphology on leaves. It is important to know the barrier for absorption and translocation of foliar applied chemicals to control this weed effectively. Microscopic and SEM analysis revealed a thick epicuticular layer on the adaxial surface and thin layer on the abaxial surface, heterogenous wax coverage. While, GC-MS profiling identified major chemical constituents including pyrans, fatty acids, sesquiterpenes and nitrogenous compounds. Wax content ranged from 72.62 to 103.92 µg cm-2. that contributed to the formation of a nearly impermeable membrane in leaves that aids stress tolerance and act as a transport barrier for foliar applied chemicals. Formulation of glyphosate with appropriate surfactants, particularly CTAB at higher ratios (1:2) of herbicide-to-surfactant, significantly improved translocation to primary, secondary and tertiary tubers. The findings highlight the critical role of cuticular wax composition in herbicide resistance and demonstrate the potential of adjuvant selection and usage for optimal herbicide delivery as well as development of more effective weed control measures against C. rotundus and similar perennial weed species.

References

  1. 1. Pollard M, Beisson F, Li Y, Ohlrogge JB. Building lipid barriers: biosynthesis of cutin and suberin. Trends in Plant Sci. 2008;13(5):236‒46. https://doi.org/10.1016/j.tplants.2008.03.003
  2. 2. Ingram G, Nawrath C. The roles of the cuticle in plant development: organ adhesions and beyond. J Experi Bot. 2017;68(19):5307‒21. https://doi.org/10.1093/jxb/erx313
  3. 3. Jetter R, Kunst L, Samuels AL. Composition of plant cuticular waxes: Biology of the plant cuticle. Ann Plant Rev. 2006;23:145‒81. https://doi.org/10.1002/9780470988718.ch4
  4. 4. Kunst L, Samuels L. Plant cuticles shine: advances in wax biosynthesis and export. Curr Opinion in Plant Biol. 2009;12(6):721‒27. https://doi.org/10.1016/j.pbi.2009.09.009
  5. 5. Zeisler-Diehl V, Müller Y, Schreiber L. Epicuticular wax on leaf cuticles does not establish the transpiration barrier, which is essentially formed by intracuticular wax. J Plant Physiol. 2018;227:66‒74. https://doi.org/10.1016/j.jplph.2018.03.018
  6. 6. Bargel H, Koch K, Cerman Z, Neinhuis C. Evans review No. 3: Structure-function relationships of the plant cuticle and cuticular waxes-a smart material?. Functional Plant Biol. 2006;33(10):893‒910. https://doi.org/10.1071/FP06139
  7. 7. Sharma P, Kothari SL, Rathore M, Gour V. Properties, variations, roles and potential applications of epicuticular wax: a review. Turkish J Bot. 2018;42(2):135‒49. https://doi.org/10.3906/bot-1702-25
  8. 8. Serrano M, Coluccia F, Torres M, L’Haridon F, Métraux JP. The cuticle and plant defense to pathogens. Frontiers in Plant Sci. 2014;5:274. https://doi.org/10.3389/fpls.2014.00274
  9. 9. Schuster AC, Burghardt M, Riederer M. The ecophysiology of leaf cuticular transpiration: are cuticular water permeabilities adapted to ecological conditions?. J Experi Bot. 2017;68(19):5271‒79. https://doi.org/10.1093/jxb/erx321
  10. 10. Nandihalli UB, Bendixen LE. Absorption, translocation and toxicity of foliar-applied imazaquin in yellow and purple nutsedge (Cyperus esculentus and C. rotundus). Weed Sci. 1988;36(3):313‒17. https://doi.org/10.1017/S0043174500074932
  11. 11. Simpson DA, Furness CA, Hodkinson TR, Muasya AM, Chase MW. Phylogenetic relationships in Cyperaceae subfamily Mapanioideae inferred from pollen and plastid DNA sequence data. American J Bot. 2003;90(7):1071‒86. https://doi.org/10.3732/ajb.90.7.1071
  12. 12. Stoller E, Sweet R. Biology and life cycle of purple and yellow nutsedges (Cyperus rotundus and C. esculentus). Weed Technol. 1987;1(1):66‒73. https://doi.org/10.1017/S0890037X0002916X
  13. 13. Cline MG. Apical dominance. The Bot Rev. 1991;57:318‒58. https://doi.org/10.1093/oxfordjournals.aob.a086567
  14. 14. Miles JE, Nishimoto RK, Kawabata O. Diurnally alternating temperatures stimulate sprouting of purple nutsedge (Cyperus rotundus) tubers. Weed Sci. 1996;44(1):122‒25. https://doi.org/10.1017/S0043174500093644
  15. 15. Khalid S. Weeds of Pakistan: Cyperaceae. Pak J Weed Sci Res. 2014;20(2): 233‒63.
  16. 16. Anton FA, Cuadra LM, Gutierrez P, Laborda E, Laborda P. Degradational behavior of the pesticides glyphosate and diflubenzuron in water. Bull Environ Contam Toxicol. 1993;51:881-88. https://doi.org/10.1007/BF00198285
  17. 17. Sass JE. Elements of botanical microtechnique;1940.
  18. 18. O'Brien T. Polychromatic staining of plant cell wall by toluidine blue-O. Protoplasma. 1964;59:69‒76. https://doi.org/10.1007/BF01248568
  19. 19. Kolattukudy P, Agrawal V. Structure and composition of aliphatic constituents of potato tuber skin (suberin). Lipids. 1974;9(9):682‒91. https://doi.org/10.1007/BF02532176
  20. 20. Ferreira J, Miranda I, Şen U, Pereira H. Chemical and cellular features of virgin and reproduction cork from Quercus variabilis. Indus Crops and Prod. 2016;94:638‒48. https://doi.org/10.1016/j.indcrop.2016.09.038
  21. 21. Tzaskos DF, Marcovicz C, Dias NMP, Rosso ND. Development of sampling for quantification of glyphosate in natural waters. Ciência e Agrotecnologia. 2012;36:399‒405. https://doi.org/10.1590/S1413-70542012000400003
  22. 22. Benazir J, Manimekalai V, Ravichandran P. Waxes from the mat sedge- Cyperus pangorei Rottb. Intern J Bot. 2012;8(1):38‒44. https://doi.org/10.3923/ijb.2012.38.44
  23. 23. Koch K, Ensikat HJ. The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron. 2008;39(7):759‒72. https://doi.org/10.1016/j.micron.2007.11.010
  24. 24. Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, et al. Classification and terminology of plant epicuticular waxes. Bot J of the Linnean Society. 1998;126(3):237‒60. https://doi.org/10.1111/j.1095-8339.1998.tb02529.x
  25. 25. Koch K, Frahm JP, Pollawatn R. The cuticle of the Buxbaumia viridis sporophyte. Flora-Morpho Distri Funct Ecol Plants. 2009;204(1):34‒39. https://doi.org/10.1016/j.flora.2007.11.007
  26. 26. Jeffree CE. Structure and ontogeny of plant cuticles. Plant Cuticles An Integrated Functional Approach. 1996:33‒82. http://dx.doi.org/10.1002/9780470988718.ch2
  27. 27. Dragota S, Riederer M. Epicuticular wax crystals of Wollemia nobilis: morphology and chemical composition. Ann of Bot. 2007;100(2):225‒31. https://doi.org/10.1093/aob/mcm120
  28. 28. Gorb E, Haas K, Henrich A, Enders S, Barbakadze N, Gorb S. Compo site structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment. J Experi Biol. 2005;208(24):4651‒62. https://doi.org/10.1242/jeb.01939
  29. 29. Riederer M, Schreiber L. Protecting against water loss: analysis of the barrier properties of plant cuticles. J Experi Bot. 2001;52(363):2023‒32. https://doi.org/10.1093/jexbot/52.363.2023
  30. 30. Wang Y, Wang J, Chai G, Li C, Hu Y, Chen X, et al. Developmental changes in composition and morphology of cuticular waxes on leaves and spikes of glossy and glaucous wheat (Triticum aestivum L.). PloS One. 2015;10(10):e0141239. https://doi.org/10.1371/journal.pone.0141239
  31. 31. Sánchez FJ, Manzanares Ma, de Andrés EF, Tenorio JL, Ayerbe L. Residual transpiration rate, epicuticular wax load and leaf colour of pea plants in drought conditions. Influence on harvest index and canopy temperature. European J Agron. 2001;15(1):57‒70. https://doi.org/10.1016/S1161-0301(01)00094-6
  32. 32. Xue D, Zhang X, Lu X, Chen G, Chen ZH. Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Front in Plant Sci. 2017;8:621. https://doi.org/10.3389/fpls.2017.00621
  33. 33. Jetter R, Riederer M. Localization of the transpiration barrier in the epi-and intracuticular waxes of eight plant species: water transport resistances are associated with fatty acyl rather than alicyclic components. Plant Physiol. 2016;170(2):921‒34. https://doi.org/10.1104/pp.15.01699
  34. 34. Riederer M, Schneider G. Comparative study of the composition of waxes extracted from isolated leaf cuticles and from whole leaves of Citrus: evidence for selective extraction. Physiologia Plantarum. 1989;77(3):373‒84. https://doi.org/10.1111/j.1399-3054.1989.tb05656.x
  35. 35. Kolattukudy PE, Walton TJ. The biochemistry of plant cuticular lipids. Progress in the Chemistry of Fats and other Lipids. 1973;13:119‒75. https://doi.org/10.1016/0079-6832(73)90006-2
  36. 36. Jenks MA, Tuttle HA, Eigenbrode SD, Feldmann KA. Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis. Plant Physiol. 1995;108(1):369‒77. https://doi.org/10.1104/pp.108.1.369
  37. 37. Shepherd T, Griffiths WD. The effects of stress on plant cuticular waxes. New Phytologist. 2006;171(3):469‒99. https://doi.org/10.1111/j.1469-8137.2006.01826.x
  38. 38. Baker CJ, McCormick SL, Bateman DF. Effects of purified cutin esterase upon the permeability and mechanical strength of cutin membranes. Phytopathol. 1982;72(4):420‒23. https://doi.org/10.1094/Phyto-77-420
  39. 39. Richardson A, Franke R, Kerstiens G, Jarvis M, Schreiber L, Fricke W. Cuticular wax deposition in growing barley (Hordeum vulgare) leaves commences in relation to the point of emergence of epidermal cells from the sheaths of older leaves. Planta. 2005;222:472‒83. https://doi.org/10.1007/s00425-005-1552-2
  40. 40. Holmes-Farley SR, Bain CD, Whitesides GM. Wetting of functionalized polyethylene film having ionizable organic acids and bases at the polymer-water interface: relations between functional group polarity, extent of ionization and contact angle with water. Langmuir. 1988;4(4):921‒37. https://doi.org/10.1021/la00082a025
  41. 41. Penner D. Activator adjuvants. Weed Technol. 2000;14(4):785‒91. https://doi.org/10.1614/0890-037X(2000)014[0785:AA]2.0.CO;2
  42. 42. Liu Z. Effects of surfactants on foliar uptake of herbicides-a complex scenario. Colloids and Surfaces B Biointerfaces. 2004;35(3-4):149‒53. https://doi.org/10.1016/j.colsurfb.2004.02.016
  43. 43. Curran WS, McGlamery MD, Liebl RA, Lingenfelter DD. Adjuvants for enhancing herbicide. Penn State Extension. Pennsylvania State University, State College, PA; 1999.
  44. 44. Costa F, Kfouri M, Fávaro C, Jordao A, da Silva V, Rodrigues G, et al. Alternative tank mix adjuvant for glufosinate. Pesticide Formulation and Delivery Systems. 2019;39:116‒24. https://doi.org/10.1520/STP161920180129

Downloads

Download data is not yet available.