Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Characterization of thermophysical properties of sorghum (Sorghum bicolor (L.) Moench) using Differential Scanning Calorimetry (DSC)

DOI
https://doi.org/10.14719/pst.8764
Submitted
8 April 2025
Published
03-10-2025

Abstract

Sorghum (S. bicolor (L.) Moench) is a significant cereal crop globally, renowned for its nutritional value, drought resistance and versatile applications in food, feed and industrial products. In this study, thermal properties of sorghum were investigated using DSC and Line Heat Source method. Thermal analysis via DSC revealed distinct phase transitions, with the glass transition temperature observed at 70 °C and gelatinization phenomena occurring within the temperature range of 69.5 - 83.3 °C, exhibiting a characteristic endothermic peak at 77 °C. The specific heat capacity was quantified in the range 1.3298 - 1.4522 kJ/kg°C with increasing moisture content and enthalpy was computed as 10.2 kJ/kg. Examination of thermal conductivity as a function of moisture content demonstrated a systematic increase in conductivity values, yielding measurements of 0.094, 0.132, 0.156, 0.189, 0.221, 0.252 W/m°C corresponding to moisture contents of 10, 12, 14,16,18 and 20 % (wet basis) (w.b.) respectively. While thermal diffusivity values ranged from 1.52 x 10-4 to 9.61 x 10-5 m2/s. The implementation of DSC methodology facilitated precise characterization of phase transitions and thermal behaviour, generating critical data for various thermal processing operations. These findings constitute significant contributions to the theoretical framework necessary for enhancing process optimization and product quality in sorghum-based applications.

References

  1. 1. Gali B, Rao PP. Regional analysis of household consumption of sorghum in major sorghum-producing and sorghum-consuming states in India. Food Secur. 2012;4:209-17. https://doi.org/10.1007/s12571-012-0189-9
  2. 2. Widowati S, Luna P. Nutritional and functional properties of sorghum (Sorghum bicolor (L.) Moench)-based products and potential valorisation of sorghum bran. IOP Conf Ser Earth Environ Sci. 2022;1024(1):012031. https://doi.org/10.1088/1755-1315/1024/1/012031
  3. 3. Birhanu S. Potential benefits of sorghum (Sorghum bicolor (L.) Moench) on human health: A review. Int J Food Eng Technol. 2021;5(1):8-18. https://doi.org/10.11648/J.IJFET.20210501.13
  4. 4. Mohapatra D, Bal S. Determination of specific heat and gelatinization temperature of rice using differential scanning calorimetry. 2003 ASAE Annual Meeting. 2003;036113. https://doi.org/10.13031/2013.15335
  5. 5. Parniakov O, Bals O, Barba FJ, Mykhailyk V, Lebovka N, Vorobiev E. Application of differential scanning calorimetry to estimate quality and nutritional properties of food products. Crit Rev Food Sci Nutr. 2018;58(3):362-85. https://doi.org/10.1080/10408398.2016.1180502
  6. 6. Kaur P, Singh M, Birwal P. Differential scanning calorimetry (DSC) for the measurement of food thermal characteristics and its relation to composition and structure. In: Khan MS, Rahman MS, editors. Techniques to measure food safety and quality. Cham; Springer. 2021. https://doi.org/10.1007/978-3-030-68636-9_18
  7. 7. PerkinElmer. Differential scanning calorimetry beginner’s guide. Differential Scanning Calorimetry (DSC). 2013.
  8. 8. Zareiforoush H, Komarizadeh MH, Alizadeh MR. Effect of moisture content on some physical properties of paddy grains. Res J Appl Sci Eng Technol. 2009;1(3):132-9.
  9. 9. Sreenarayanan VV, Chattopadhyay PK. Thermal conductivity and diffusivity of rice bran. J Agric Eng Res. 1986;34(2):115-21. https://doi.org/10.1016/S0021-8634(86)80004-X
  10. 10. Shinoj S, Viswanathan R, Sajeev MS, Moorthy SN. Gelatinisation and rheological characteristics of minor millet flours. Biosyst Eng. 2006;95(1):51-9. https://doi.org/10.1016/j.biosystemseng.2006.05.012
  11. 11. Ghodki BM, Tangirala ADS, Goswami TK. Moisture dependent thermal properties of cassia. Cogent Food Agric. 2016;2(1):1227110. https://doi.org/10.1080/23311932.2016.1227110
  12. 12. Singh KK, Goswami TK. Thermal properties of cumin seed. J Food Eng.. 2000;45(4):181-7. https://doi.org/10.1016/S0260-8774(00)00049-2
  13. 13. Mwithiga G, Sifuna MM. Effect of moisture content on the physical properties of three varieties of sorghum seeds. J Food Eng. 200675(4):480-6. https://doi.org/10.1016/j.jfoodeng.2005.04.053
  14. 14. Chang CS. Thermal conductivity of wheat, corn and grain sorghum as affected by bulk density and moisture content. Trans ASAE. 1986;29(5):1447-50. https://doi.org/10.13031/2013.30335
  15. 15. Subramanian S, Viswanathan R. Thermal properties of minor millet grains and flours. Biosyst Eng. 2003;84(3):289-96.
  16. https://doi.org/10.1016/S1537-5110(02)00222-2
  17. 16. Alagusundaram K, Jayas DS, Muir WE, White NDG. Thermal conductivity of bulk barley, lentils and peas. Trans ASAE. 1991;34(4):1784-8. https://doi.org/10.13031/2013.31801
  18. 17. Li S, Wei Y, Fang Y, Zhang W, Zhang B. DSC study on the thermal properties of soybean protein isolates/corn starch mixture. J Therm Anal Calorim. 2014;115:1633-8. https://doi.org/10.1007/s10973-013-3433-4
  19. 18. Sopade P, Halley P, Junming L. Gelatinisation of starch in mixtures of sugars. II. Application of differential scanning calorimetry. Carbohydr Polym. 2004;58(3):311-21. https://doi.org/10.1016/j.carbpol.2004.07.007
  20. 19. Karim AA, Norziah MH, Seow CC. Methods for the study of starch retrogradation. Food Chem. 2000;71(1):9-36. https://doi.org/10.1016/S0308-8146(00)00130-8
  21. 20. Zheng M-Z, Xiao Y, Yang S, Liu H-M, Liu M-H, Yaqoob S, et al. Effects of heat–moisture, autoclaving and microwave treatments on physicochemical properties of proso millet starch. Food Sci Nutr. 2020;8(2):735-43. https://doi.org/10.1002/fsn3.1295
  22. 21. Ikegwu TM, Nkama IRO, Okafor IG. Comparative studies of the proximate, microscopic and thermal properties of processed maize, wheat, millet, cassava and Bambara nut flours. Acta Sci Nutr Health. 2023;7(2):38-47. https://actascientific.com/ASNH/pdf/ASNH-07-1186.pdf
  23. 22. Liu P, Yu L, Liu H, Chen L, Li L. Glass transition temperature of starch studied by a high-speed DSC. Carbohydrate Polym. 2009;77(2):250-3. https://doi.org/10.1016/j.carbpol.2008.12.027
  24. 23. Cao W, Nishiyama Y, Koide S. Physicochemical, mechanical and thermal properties of brown rice grain with various moisture contents. Int J Food Sci Technol.. 2004;39(9):899-906. https://doi.org/10.1111/j.1365-2621.2004.00849.x
  25. 24. Arku AY, Aviara NA, Ahamefula SC. Specific heat of selected legumes and cereal grains grown in north eastern Nigeria. Arid Zone J Eng Technol Environ. 2012;8:105-14.
  26. 25. Azadbakht M, Khoshtaghaza MH, Ghobadian B, Minaei S. Thermal properties of soybean pod as a function of moisture content and temperature. Am J Food Sci Technol. 2013;1(2):9-13.
  27. 26. Singh V, Okadome H, Toyoshima H, Isobe S, Ohtsubo KI. Thermal and physicochemical properties of rice grain, flour and starch. J Agric Food Chem. 2000;48(7):2639-47. https://doi.org/10.1021/jf990374f
  28. 27. Sadiku OA, Bamgboye I. Moisture dependent mechanical and thermal properties of Locust bean (Parkia biglobosa). Agric Eng Int CIGR J. 2014;16(1):99-106.

Downloads

Download data is not yet available.