Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Evaluation of morphological and anatomical variability in tossa jute (Corchorus olitorius L.) genotypes for fiber yield improvement

DOI
https://doi.org/10.14719/pst.8771
Submitted
9 April 2025
Published
28-10-2025
Versions

Abstract

Tossa jute (Corchorus olitorius L.) is a natural fibre crop that produces good quality golden fibre. Predicting fibre yield and quality is crucial in jute breeding programs. Fibre anatomical characteristics provide valuable insights into both fibre yield and quality. Hence, seven tossa jute genotypes were investigated through field-based morphological studies and laboratory-oriented anatomical studies for fibre yield and yield-attributing morpho anatomical variability at Bangladesh Jute Research Institute (BJRI) during March 2023 to February 2024. Morphological analysis revealed significant genotypic variations in plant height, base diameter, green weight, fibre yield and stick yield (p < 0.05), highlighting their potential as key differentiators for breeding activities. The genotypes JRO-524 and O-0412-9-4 exhibited superior traits, including higher plant height (2.67 m and 2.64 m) and base diameter (13.89 mm and 13.18 mm) at 110 days after sowing. High heritability was observed for green weight (80.22 %) and fibre yield (80.05 %), indicating that these traits can be effectively targeted for genetic improvement. Anatomical studies revealed significant variability in stem diameter, bark thickness and fibre bundle attributes (p < 0.01). JRO-524 demonstrated the highest stem diameter (17.67 mm) and bark thickness (1.53 mm), while BJRI Tossa pat 9 excelled in trapezoid width and total bundle area. Principal component analysis (PCA) captured 85.7 % of cumulative variance across the first three components, with plant height, base diameter and fibre yield being major contributors. The PCA biplot categorized genotypes into five groups, elucidating genetic diversity for targeted breeding strategies. These findings will provide a foundation for developing high-yielding, fibre-rich tossa jute varieties in future.

References

  1. 1. Kumar T, Mallick T, Hemel SAK, Ghosh RK, Ali MI, Al-Bakky A, et al. Optimizing boron application methods and dosages to enhance jute (Corchorus olitorius) seed yield and quality under sub-tropical climate. Heliyon. 2025;11(3):e42320. https://doi.org/10.1016/j.heliyon.2025.e42320
  2. 2. Alam MJ, Mukul MM, Yahiya ASM, Mahmud F, Bhuiyan MSR. Genetic variability, character association, and path analyses effects on fibre yield and yield attributing morpho-agronomic traits of Tossa jute (Corchorus olitorius L.). Plant Sci Today. 2024;11(4):945–61. https://doi.org/10.14719/pst.4183
  3. 3. Mukul MM, Akter N, Mostofa MG, Rahman MS, Hossain Md. Al-E, Roy DC, et al. Analyses of variability, Euclidean clustering and principal components for genetic diversity of eight Tossa jute (Corchorus olitorius L.) genotypes. Plant Sci Today. 2020;7(4):564–76. https://doi.org/10.14719/pst.2020.7.4.854
  4. 4. Mukul MM, Akter N, Ahmed SSU, Mostofa Md, Ghosh RK, Islam SN, et al. Genetic diversity analyses of twelve Tossa jute (Corchorus olitorius L.) genotypes based on variability, heritability and genetic advance for yield and yield attributing morphological traits. Int J Plant Breed Gen. 2020;14:9–16. http://doi.org/10.3923/ijpbg.2020.9.16
  5. 5. Mukul MM, Akter N. Morpho-anatomical variability, principal component analysis and Euclidean clustering of tossa jute (Corchorus olitorius L.). Heliyon. 2021;7(5):e07042. https://doi.org/10.1016/j.heliyon.2021.e07042
  6. 6. Patel GI, Datta RM. Interspecific hybridization between Corchorus olitorius Linn. and C. capsularis Linn. and the cytogenetic basis of incompatibility between them. Euphytica. 1960;9:89–110. https://doi.org/10.1007/BF00032523
  7. 7. Farge L, Friedman T, Cock ST. Improvement of fibre crops using genetics and biotechnology. In: Powell RM, et al., editors. Paper and composites from agrobased resources. Boca Raton (FL): CRC Lewis Publishers; 1997. p. 39–59.
  8. 8. Bhandari HR, Bhanu AN, Srivastava K, Singh MN, Shreya HA. Assessment of genetic diversity in crop plants—an overview. Adv Plants Agric Res. 2017;7(3):279–86. Available from: https://www.researchgate.net/profile/ArbindChoudhary3/post/Can_we_use_morphological_markers_to_visualise_population_structure_in_palnts/
  9. 9. Ngomuo M, Stoilova T, Feyissa T, Ndakidemi P. Genetic diversity of jute mallow (Corchorus spp.) accessions based on ISSR markers. Am J Plant Sci. 2024;15(5):316–28. https://doi.org/10.4236/ajps.2024.155023
  10. 10. Maity S, Chowdhury S, Datta AK. Jute biology, diversity, cultivation, pest control, fibre production and genetics. In: Lichtfouse E, editor. Organic fertilisation, soil quality and human health. Dordrecht: Springer; 2012. p. 227–62. https://doi.org/10.1007/978-94-007-4113-3_10
  11. 11. Gholampour A, Ozbakkaloglu TA. Review of natural fibre composites: properties, modification and processing techniques, characterization, applications. J Mat Sci. 2020;55(2):829–92. https://doi.org/10.1007/s10853-019-03990-y
  12. 12. Ngomuo M, Stoilova T, Feyissa T, Ndakidemi PA. Characterization of morphological diversity of jute mallow (Corchorus spp.). Int J Agron. 2017;2017:6460498. https://doi.org/10.1155/2017/6460498
  13. 13. Kundu A, Sarkar D, Mandal N. A secondary phloic (bast) fibre-shy (bfs) mutant of dark jute (Corchorus olitorius L.) develops lignified fibre cells but is defective in cambial activity. Plant Growth Regul. 2012;67(1):45–55. https://doi.org/10.1007/s10725-012-9660-z
  14. 14. Kumar V, Singh PK, Dudhane AS, De DK, Satya P. Anatomical and morphological characteristics of nine jute genotypes. J Crop Weed. 2014;10(2):334–9. Available from: https://www.academia.edu/download/77583318/Anatomical_and_morphological_characteris20211229-4073-14kjo8p.pdf
  15. 15. Duan L, Yu W, Li Z. Analysis of structural changes in jute fibres after peracetic acid treatment. J Eng Fibre Fabr. 2017;12(1):33–42. https://doi.org/10.1177/155892501701200104
  16. 16. Mukul MM, Akter N, Islam MM, Bhuiyan Md SH, Mostafa Md G, Ghosh RK, et al.. Morpho-phenetical study of high-yielding Tossa jute variety BJRI Tossa Pat 7 (MG-1) for bast fibre yield and qualities. Heliyon. 2021;7(10):e08129. https://doi.org/10.1016/j.heliyon.2021.e08129
  17. 17. Zhang L, Ibrahim AK, Niyitanga S, Zhang L, Qi J. Jute (Corchorus spp.) breeding. In: Al-Khayri J, Jain S, Johnson D, editors. Advances in Plant Breeding Strategies: Industrial and Food Crops. Cham: Springer; 2019. p.123–62. https://doi.org/10.1007/978-3-030-23265-8_4
  18. 18. Constable G, Llewellyn D, Walford SA, Clement JD. Cotton breeding for fibre quality improvement. In: Cruz VMV, Dierig DA, editors. Industrial Crops. Handbook of Plant Breeding. New York: Springer; 2015. p. 9. https://doi.org/10.1007/978-1-4939-1447-0_10
  19. 19. Sawarkar A, Yumnam S, Patil SG, Mukherjee S. Correlation and path coefficient analysis of yield and its attributing traits in Tossa jute (Corchorus olitorius L.). The Bioscan. 2014;9(2):883–7. Available from: https://www.researchgate.net/publication/282503299
  20. 20. Miah A, Hossain AKMS, Saha NR, Ali MY, Alam MJ, Hasanuzzaman M. An anatomical screening of white jute accessions for fibre content. J Sci Agric. 2020;4:72–6. https://doi.org/10.25081/jsa.2020.v4.6340
  21. 21. Oram RN, Shaikh MAQ, Ahmed ZU, Majid MA. Indirect selection for high-yielding mutants using anatomical yield components in jute (Corchorus capsularis L.). Environ Exp Bot. 1983;3(2):155–60. https://doi.org/10.1016/0098-8472(83)90034-5
  22. 22. Majumdar S. Prediction of fibre quality from anatomical studies of jute stem: Part I – Prediction of fineness. Indian J Fibre Textile Res. 2002;27:248–53. Available from: http://nopr.niscair.res.in/bitstream/123456789/22849/1/IJFTR %2027 %283 %29 %20248-253.pdf
  23. 23. Kar C, Kundu A, Sarkar D, Sinha MK, Mahapatra BS. Genetic diversity in jute (Corchorus spp.) and its utilization: a review. Indian J Agric Sci. 2009;79(8):575–86. Available from: http://epubs.icar.org.in/ejournal/index.php/ijags/article/view/2454/590
  24. 24. Kumar AA, Sharma HK, Choudhary SB, Maruthi RT, Jawaharlal J, et al. Combining ability and heterosis study for fibre yield and yield attributing characters in Tossa jute (Corchorus olitorius L.). Vegetos. 2016;29(3). https://doi.org/10.4172/2229-4473.1000154
  25. 25. Jatothu JL, Kumar AA, Choudhary SB, Sharma HK, Maruthi RT, Kar CS, et al. Genetic diversity analysis in Tossa jute (Corchorus olitorius L.) germplasm lines. J Appl Natural Sci. 2018;10(1):1–3. Available from: https://core.ac.uk/download/pdf/158353747.pdf
  26. 26. Das B, Chakrabarti K, Tripathi S, Chakraborty A. Review of some factors influencing jute fibre quality. J Nat Fibres. 2014;11(3):268–81. https://doi.org/10.1080/15440478.2014.880103
  27. 27. Mandal A, Datta AK. Stability analysis of a high fibre yield and low lignin content “thick stem” mutant in Tossa Jute (Corchorus olitorius L.). BioMed Research International. 2014;2014:539869. https://doi.org/10.1155/2014/539869
  28. 28. Kundu A, Sarkar D, Mandal NA, Sinha MK, Mahapatra BS. A secondary phloem (bast) fibre-shy (bfs) mutant of dark jute (Corchorus olitorius L.) develops lignified fibre cells but is defective in cambial activity. Plant Growth Regul. 2012;67:45–55. https://doi.org/10.1007/s10725-012-9660-z
  29. 29. Priyadarshan PM. Plant breeding: Classical to Modern. Singapore: Springer Nature; 2019. http://doi.org/10.1007/978-981-13-7095-3
  30. 30. Rahman MS, Islam MN, Polan MS, Talukder FU, Mukul MM. Relative toxicity of some chemical pesticides against jute hairy caterpillar (Spilosoma obliqua W.) in Tossa jute (Corchorus olitorius L.). Malaysian J Sustain Agric. 2019;5(2):115–22. http://doi.org/10.26480/mjsa.02.2021.115.122
  31. 31. Islam MM. Jute, Kenaf and Mesta Crops Research Reviews. Dhaka: Bangladesh Jute Research Institute, Ministry of Agriculture; 2020.
  32. 32. Bangladesh Council of Scientific and Industrial Research (BCSIR) Central Report [Internet]. Dhaka: BCSIR; 2018[cited 2025 Aug 12 ]. Available from: http://bcsir.portal.gov.bd/.
  33. 33. Ghosh RK, Sreewongchai T, Nakasathien S, Phumichai C. Phenotypic variation and the relationships among jute (Corchorus species) genotypes using morpho-agronomic traits and multivariate analysis. Aust J Crop Sci. 2013;7:830–42.
  34. 34. Kumar V. Genetic analysis of fibre anatomy characters in Tossa jute. Saarbrücken: LAP Lambert Academic Publishing; 2020.
  35. 35. Meshram JH, Palit P. On the role of cell wall lignin in determining the fineness of jute fibre. Acta Physiol Plant. 2013;35:1565–78. https://doi.org/10.1007/s11738-012-1198-1
  36. 36. Mir RR, Rustgi S, Sharma S, Singh R, Goyal A, Kumar J, et al. A preliminary genetic analysis of fibre traits and the use of new genomic SSRs for genetic diversity in jute. Euphytica. 2008;161:413–27. https://doi.org/10.1007/s10681-007-9597-x
  37. 37. Palit P, Sasmal BC, Bhattacharyya AC. Germplasm diversity and estimate of genetic advance of four morpho-physiological traits in a world collection of jute. Euphytica. 1996;90:49–58. https://doi.org/10.1007/BF00025159
  38. 38. Yadeta B, Belew D, Gebreselassie W, Marame F. Variability, heritability and genetic advance in hot pepper (Capsicum annuum L.) genotypes in West Shoa, Ethiopia. Am-Eurasian J Agric Environ Sci. 2011;10:587–92. Available from: https://www.researchgate.net/publication/215535876

Downloads

Download data is not yet available.