Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Tea (Camellia sinensis (L.) O Kuntze) under waterlogging stress: A comprehensive review on adaptation mechanisms and crop improvement opportunities

DOI
https://doi.org/10.14719/pst.8794
Submitted
10 April 2025
Published
10-11-2025
Versions

Abstract

Tea is one of the most consumed beverages worldwide, cultivated in nearly 64 countries. Although a significant amount of water is required for proper growth of tea plant, excessive moisture or waterlogging conditions are detrimental to tea yield and quality. Waterlogged conditions in tea hinder root respiration, accumulate toxic metabolites and alter several physiological descriptors such as leaf yellowing, stomatal closure restricting photosynthesis, leaf senescence, wilting and oxidative damage. Plants immediately respond to waterlogging stress by adapting their morphological structure, such as promoting adventitious root development and aerenchyma formation, or by regulating their defence system, for instance, triggering the accumulation of osmoprotectants and enhancing antioxidant activities to facilitate normal plant functioning. Most of the current research have concentrated on how tea plants respond to waterlogging, but there is a lack of information on the in-depth mechanisms behind the responses. Again, unlike other crop perspectives, crop improvement studies to overcome this issue are also severely insufficient. This review discusses morphological, physiological and biochemical reactions of tea plants to waterlogging stress, with a hypothetical possible mechanism behind the responses. Many possible opportunities are suggested to boost waterlogging tolerance through modern and conventional breeding approaches. This paper also mentions some knowledge gaps, providing future research thrusts with systemic critiques of present studies.

References

  1. 1. Kyu KL, Taylor CM, Douglas CA, Malik AI, Colmer TD, Siddique M, et al. Genetic diversity and candidate genes for transient waterlogging tolerance in mungbean at the germination and seedling stages. Front Plant Sci. 2024;15. https://doi.org/10.3389/fpls.2024.1297096
  2. 2. Morales-Olmedo M, Ortiz M, Sellés G. Effects of transient soil waterlogging and its importance for rootstock selection. Chil J Agr Res. 2015;75(Suppl. 1):45–56. https://doi.org/10.4067/S0718-58392015000300006
  3. 3. Zahra N, Hafeez MB, Shaukat K, Wahid A, Hussain S, Naseer R, et al. Hypoxia and anoxia stress: plant responses and tolerance mechanisms. J Agron Crop Sci. 2021;207(2):249–84. https://doi.org/10.1111/jac.12471
  4. 4. da-Silva CJ, do Amarante L. Short-term nitrate supply decreases fermentation and oxidative stress caused by waterlogging in soybean plants. Environ Exp Bot. 2020;176:104078. https://doi.org/10.1016/j.envexpbot.2020.104078
  5. 5. Luo H, Liu S, Song Y, Qin T, Xiao S, Li W, et al. Effects of waterlogging stress on root growth and soil nutrient loss of winter wheat at seedling stage. Agronomy. 2024;14(6):1247–57. https://doi.org/10.3390/agronomy14061247
  6. 6. Malik AI, Colmer TD, Lambers H, Setter TL, Schortemeyer M. Short-term waterlogging has long-term effects on the growth and physiology of wheat. New Phytol. 2002;153(2):225–36. https://doi.org/10.1046/j.0028-646X.2001.00318.x
  7. 7. Naher N, Alam AKMM, Zannat O. Short-term waterlogging effect on growth and yield of mungbean. J Sher-e-Bangla Agric Univ. 2022;13(1&2):41–48. https://saulibrary.edu.bd/sauj/jsau/v-13-n-1-2/v-13-n-1-2-a-5.pdf
  8. 8. Wang H, Chen Y, Hu W, Wang S, Snider JL, Zhou Z. Carbohydrate metabolism in the subtending leaf cross-acclimates to waterlogging and elevated temperature stress and influences boll biomass in cotton (Gossypium hirsutum). Physiol Plant. 2017;161(3):339–54. https://doi.org/10.1111/ppl.12592
  9. 9. Basak SR, Basak AC, Rahman MA. Impacts of floods on forest trees and their coping strategies in Bangladesh. Weather Clim Extrem. 2015;7:43–48. https://doi.org/10.1016/j.wace.2014.12.002
  10. 10. Khamis MH, Hariri MF. Effect of prolonged waterlogging on growth and mineral content of different forest tree species. In: XIV World Forestry Congress. Durban, South Africa; 2015. p. 1–11. https://foris.fao.org/wfc2015/api/file/55168b3a75ecfcd11a935ad2/contents/6bd8ea6e-eab0-4e18-803d-60068cb74b11.pdf
  11. 11. FAO. Crops and livestock products [Internet]. Food and Agriculture Organization of the United Nations. 2023 [cited 2025 Apr 6]. https://www.fao.org/faostat/en/#data/QCL
  12. 12. Mukhopadhyay M, Mondal TK. Cultivation, improvement and environmental impacts of tea. In: Oxford Research Encyclopedia of Environmental Science; 2017. https://doi.org/10.1093/acrefore/9780199389414.013.373
  13. 13. Wijeratne MA, Anandacoomaraswamy A, Amarathunga MKSLD, Ratnasiri J, Basnayake BRSB, Kalra N. Assessment of impact of climate change on productivity of tea (Camellia sinensis L.) plantations in Sri Lanka. J Natl Sci Found Sri. 2007;35(2):119. https://doi.org/10.4038/jnsfsr.v35i2.3676
  14. 14. Duncan JMA, Saikia SD, Gupta N, Biggs EM. Observing climate impacts on tea yield in Assam, India. Appl Geogr. 2016;77:64–71. https://doi.org/10.1016/j.apgeog.2016.10.004
  15. 15. Lou W, Sun K, Zhao Y, Deng S, Zhou Z. Impact of climate change on inter‐annual variation in tea plant output in Zhejiang, China. Int J Climatol. 2020;41(S1). https://doi.org/10.1002/joc.6700
  16. 16. Arefin MR, Haque MS, Sarwar AKMG. Characterization and genetic diversity of tea (Camellia sinensis (L.) O. Kuntze) genotypes for waterlogging tolerance. Phyton-Int J Exp Bot. 2024;93(12):3411–42. https://doi.org/10.32604/phyton.2024.058893
  17. 17. Borah D, Deka DK, Lahon T, Baruah U, Barman TS. Water logging tolerant clone for cultivation in marginal land. Sci Cult. 2011;77(9-10):419–24.
  18. 18. Ghosal S. Tea production down by more than 10 percent due to heavy rain, flooding in Assam and West Bengal. The Economic Times [Internet]. 2020 Jul 20 [cited 2025 Mar 31].
  19. 19. Mahindapala KGJP, Jayarathna SPAPK. Impact of flood for production of tea small holdings: A case study at 2017 floods in the tea small holdings in Kaluganga River Basin of Ratnapura district, Sri Lanka. In: Seventh Symposium on plantation Crop Research. Colombo, Sri Lanka; 2019. p. 1–30.
  20. 20. Barman TS, Baruah U, Deka DK, Borah D, Lahon T, Saikia JK. Selection and evaluation of waterlogging tolerant tea genotypes for plantation in marginal land. Two Bud. 2011;58:33–38.
  21. 21. Deka DK, Borah D, Lahon T, Baruah U, Handique AK, Barman TS. Selection of waterlogging tolerant tea (Camellia sinensis L.) genotypes. J Plant Crops. 2011;39(1):203–09.
  22. 22. Jeyaramraja PR, Pius PK, Kumar RR, Jayakumar D. Soil moisture stress-induced alterations in bio constituents determining tea quality. J Sci Food Agric. 2003;83(12):1187–91. https://doi.org/10.1002/jsfa.1440
  23. 23. Hossain MI. Techsoi Cha Nursery Bebosthapona (Sustainable Tea Nursery Management). Sreemangal, Moulvibazar-3210: Bangladesh Tea Research Institute; 2024. pp. 1–26.
  24. 24. Azka NA, Taryono, Wulandari RA. Assessment of tea plant (Camellia sinensis L.) accessions for pollen sources in natural crossing by using microsatellites. SABRAO J Breed Genet. 2021;53(4):673–84. https://doi.org/10.54910/sabrao2021.53.4.10
  25. 25. Ranjith K, Victor R, Ilango J. Influence of top working on growth and flowering of tea clones. Sci Hortic. 2018;235:47–52. https://doi.org/10.1016/j.scienta.2018.02.008
  26. 26. Shehasen MZ. Tea plant (Camellia sinensis) breeding mechanisms role in genetic improvement and production of major producing countries. Int J Res Stud Sci Eng Technol. 2019;6(11):10–20. https://ijrsset.org/pdfs/v6-i11/2.pdf
  27. 27. Das S, Das S, Hazarika M. Breeding of the tea plant (Camellia sinensis) in India. In: Chen L, Apostolides Z, Chen ZM, editors. Advanced Topics in Science and Technology in China. Berlin:Springer; 2012. p. 69–124. https://doi.org/10.1007/978-3-642-31878-8_3
  28. 28. Mondal TK. Breeding and biotechnology of tea and its wild species. New Delhi, India: Springer; 2014. https://doi.org/10.1007/978-81-322-1704-6
  29. 29. Li Z, Bai D, Zhong Y, Lin M, Sun L, Qi X, et al. Full-length transcriptome and RNA-Seq analyses reveal the mechanisms underlying waterlogging tolerance in Kiwifruit (Actinidia valvata). Int J Mol Sci. 2022;17;23(6):3237–47. https://doi.org/10.3390/ijms23063237
  30. 30. Insausti P, Gorjón S. Floods affect physiological and growth variables of peach trees (Prunus persica (L.) Batsch), as well as the postharvest behavior of fruits. Sci Hort. 2013;152:56–60. https://doi.org/10.1016/j.scienta.2013.01.005
  31. 31. Medeiros WJF de, Oliveira FÍF de, Lacerda CF de, Sousa CHC de, Cavalcante LF, Silva ARA da, et al. Isolated and combined effects of soil salinity and waterlogging in seedlings of “Green Dwarf” coconut. Semin Ciênc Agrár. 2018;39(4):1459. https://doi.org/10.5433/1679-0359.2018v39n4p1459
  32. 32. Zhang Y, Li Y, Liang T, Yuan Y, Li Z, Xu S, et al. Field-grown cotton shows genotypic variation in agronomic and physiological responses to waterlogging. Field Crops Res. 2023;302:109067. https://doi.org/10.1016/j.fcr.2023.109067
  33. 33. Silveira HR de O, Santos M de O, Alves JD, Souza KRD de, Andrade CA, Alves RGM. Growth effects of water excess on coffee seedlings (Coffea arabica L.). Acta Sci Agr. 2014;36(2):211–21. https://doi.org/10.4025/actasciagron.v36i2.17557
  34. 34. Rao NR, Kapoor M, Sharma N, Venkateswarlu K. Yield prediction and waterlogging assessment for tea plantation land using satellite image-based techniques. Int J Remote Sens. 2007;28(7):1561–76. https://doi.org/10.1080/01431160600904980
  35. 35. Topali C, Antonopoulou C, Chatzissavvidis C. Effect of waterlogging on growth and productivity of fruit crops. Hortic. 2024;10(6):623–33. https://doi.org/10.3390/horticulturae10060623
  36. 36. León-Burgos AF, Unigarro CA, Balaguera-López HE. Soil waterlogging conditions affect growth, water status and chlorophyll “a”, fluorescence in coffee plants (Coffea arabica L.). Agron. 2022;12(6):1270. https://doi.org/10.3390/agronomy12061270
  37. 37. Manghwar H, Hussain A, Alam I, Khoso MA, Ali Q, Liu F. Waterlogging stress in plant: unraveling the mechanisms and impacts on growth, development and productivity. Environ Exp Bot. 2024;224:105824–34. https://doi.org/10.1016/j.envexpbot.2024.105824
  38. 38. Azrai M, Efendi R, Muliadi A, Aqil M, Suwarti N, Zainuddin B, et al. Genotype by environment interaction on tropical maize hybrids under normal irrigation and waterlogging conditions. Front Sustain Food Syst. 2022;6. https://doi.org/10.3389/fsufs.2022.913211
  39. 39. Voesenek LACJ, Colmer TD, Pierik R, Millenaar FF, Peeters AJM. How plants cope with complete submergence. New Phytol. 2006;170(2):213–26. https://doi.org/10.1111/j.1469-8137.2006.01692.x
  40. 40. Eysholdt-Derzsó E, Sauter M. Hypoxia and the group VII ethylene response transcription factor HRE2 promote adventitious root elongation in Arabidopsis. Plant Biol J. 2019;21:103–08. https://doi.org/10.1111/plb.12873
  41. 41. Evans DE, Gladish DK. Plant responses to waterlogging. In: Thomas B, Murray BG, Murphy DJ, editors. Encyclopedia of Applied Plant Sciences. 2nd edition. Oxford: Acad Press; 2017. p. 36–39. https://doi.org/10.1016/B978-0-12-394807-6.00083-6
  42. 42. Pan J, Sharif R, Xu X, Chen X. Mechanisms of waterlogging tolerance in plants: research progress and prospects. Front Plant Sci. 2021;11. https://doi.org/10.3389/fpls.2020.627331
  43. 43. Xu Z, Ye L, Shen Q, Zhang G. Advances in studies on waterlogging tolerance in plants. J Integr Agric. 2023;23(9). https://doi.org/10.1016/j.jia.2023.12.028
  44. 44. Garnczarska M. Response of the ascorbate–glutathione cycle to re-aeration following hypoxia in lupine roots. Plant Physiol Bioch. 2005;43(6):583–90. https://doi.org/10.1016/j.plaphy.2005.05.003
  45. 45. Hartman S, Liu Z, van Veen H, Vicente J, Reinen E, Martopawiro S, et al. Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nature Commun. 2019;10(1):4020. https://doi.org/10.1038/s41467-019-12045-4
  46. 46. Yeung E, Van Veen H, Vashisht D, Sobral Paiva AL, Hummel M, Rankenberg T, et al. A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2018;115(26). https://doi.org/10.1073/pnas.1803841115
  47. 47. Kamau DM. Productivity and resource use in ageing tea plantations [PhD Thesis]. Wageningen: Wageningen University; 2008. p. 1–140. https://edepot.wur.nl/121950
  48. 48. Li S, Lu J, Pope E, Golding N, Zhou T, Li F, et al. Influence of multi-timescale precipitation indices on primary tea production in Baoshan, Yunnan, China. Environ Res Commun. 2022;4(2):025009–19. https://doi.org/10.1088/2515-7620/ac5087
  49. 49. Amarathunga MKSLD. Remedial measures to improve the productivity of low-lying tea lands. Tea Bull. 2004;19:15–17.
  50. 50. Wingfield MJ. Pathology- Diseases of Forest Trees. In: Burley J, editor. Encyclopedia of Forest Sciences. Singapore: Elsevier; 2004. p. 744–50 https://doi.org/10.1016/B0-12-145160-7/00061-2
  51. 51. Fujita S, Noguchi K, Tange T. Root responses of five Japanese afforestation species to waterlogging. Forests. 2020;11(5):552–62. https://doi.org/10.3390/f11050552
  52. 52. Sarma KC. Waterlogging: disease of tea and associated crops in North East India. India: Tocklai Tea Research Institute; 1960. p. 56.
  53. 53. Barman TS, Saikia JK, Pathak SK. Starch reserve and growth of tea. Two Bud. 1998;45:14–18.
  54. 54. Cisse EHM, Huang JF, Li DD, Miao LF, Xiang LS, Yang F. Exogenous spermidine alleviated waterlogging damages in two varieties of Camellia oleifera. Forests. 2023;14(1):91–101. https://doi.org/10.3390/f14010091
  55. 55. Bailey-Serres J, Voesenek LACJ. Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol. 2008;59(1):313–39. https://doi.org/10.1146/annurev.arplant.59.032607.092752
  56. 56. da-Silva CJ, do Amarante L. Nitric oxide signaling in plants during flooding stress. In: Singh VP, Singh S, Tripathi DK, Romero-Puertas MC, Sandalio LM, editors. Nitric Oxide in Plant Biology. Oxford: Academic Press; 2022. p. 241–60. https://doi.org/10.1016/B978-0-12-818797-5.00009-1
  57. 57. Manik SMN, Quamruzzaman M, Zhao C, Johnson P, Hunt I, Shabala S, et al. Genome-wide association study reveals marker trait associations (MTA) for waterlogging-triggered adventitious roots and aerenchyma formation in barley. Int J Mol Sci. 2022;23(6):3341. https://doi.org/10.3390/ijms23063341
  58. 58. Wan L, Wu Y, Huang J, Dai X, Lei Y, Yan L, et al. Identification of ERF genes in peanuts and functional analysis of AhERF008 and AhERF019 in abiotic stress response. Funct Integr Genomics. 2014;14(3):467–77. https://doi.org/10.1007/s10142-014-0381-4
  59. 59. Bashar KK, Tareq MZ, Islam MS. Unlocking the mystery of plants’ survival capability under waterlogging stress. Plant Sci Today. 2020;7(2):142–53. https://doi.org/10.14719/pst.2020.7.2.663
  60. 60. Wang L, Dossa K, You J, Zhang Y, Li D, Zhou R, et al. High-resolution temporal transcriptome sequencing unravels ERF and WRKY as the master players in the regulatory networks underlying sesame responses to waterlogging and recovery. Genomics. 2021;113(1):276–90. https://doi.org/10.1016/j.ygeno.2020.11.022
  61. 61. Hinz M, Wilson IW, Yang J, Buerstenbinder K, Llewellyn D, Dennis ES, et al. Arabidopsis RAP2.2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiol. 2010;153(2):757–72. https://doi.org/10.1104/pp.110.155077
  62. 62. Zhao N, Li C, Yan Y, Cao W, Song A, Wang H, et al. Comparative transcriptome analysis of waterlogging-sensitive and waterlogging-tolerant Chrysanthemum morifolium cultivars under waterlogging stress and reoxygenation conditions. Int J Mol Sci. 2018;19(5):1455. https://doi.org/10.3390/ijms19051455
  63. 63. Liu Y, Chen S, Chen J, Wang J, Wei M, Tian X, et al. Comprehensive analysis and expression profiles of the AP2/ERF gene family during spring bud break in tea plant (Camellia sinensis). BMC Plant Biol. 2023;23(1):206. https://doi.org/0.1186/s12870-023-04221-y
  64. 64. Zhang T, Cai J, Wang S, Lv L, Yuan D, Zeng X, et al. Identification and expression analysis of the ethylene response factor gene family in tea plant (Camellia sinensis). Agronomy. 2023;13(7):1900. https://doi.org/10.3390/agronomy13071900
  65. 65. Zhang C, Li H, Mei P, Ye Y, Liu D, Gong Y, et al. QTL detection and candidate gene analysis of the anthracnose resistance locus in tea plant (Camellia sinensis). J Integr Agric. 2025;24(6):2240–50. https://doi.org/10.1016/j.jia.2025.02.015
  66. 66. Deka DK. Physiological, biochemical and molecular characterization of some waterlogging tolerant tea [Camellia sinensis (L) O. Kuntze] germplasm of Brahmaputra valley. [PhD Thesis]. India: Gauhati University; 2013. p. 1–235.
  67. 67. Sharma S, Sharma J, Soni V, Kalaji HM, Elsheery NI. Waterlogging tolerance: A review on regulative morpho-physiological homeostasis of crop plants. J Water Land Dev. 2021;16–28. https://doi.org/10.24425/jwld.2021.137092
  68. 68. Enkhbat G, Ryan MH, Foster KJ, Nichols PGH, Kotula L, Hamblin A, et al. Large variation in waterlogging tolerance and recovery among the three subspecies of Trifolium subterranean L. is related to root and shoot responses. Plant Soil. 2021;464(1–2):467–87. https://doi.org/10.1007/s11104-021-04959-0
  69. 69. Kamal KA, Shah FA, Zhao Y, Chen Z, Fu S, Zhu Z, et al. Genome-wide identification of the UGT genes family in Acer rubrum and role of ArUGT52 in anthocyanin biosynthesis under cold stress. BMC Plant Biol. 2025;25(1):288. https://doi.org/10.1186/s12870-024-06043-y
  70. 70. Deng D, Gao Q, Zeng R, Jiang J, Shen Q, Ma Y, et al. The Proline Dehydrogenase gene CsProDH1 regulates homeostasis of the Pro-P5C cycle under drought stress in tea plants. Int J Mol Sci. 2025;26(7):3121. https://doi.org/10.3390/ijms26073121
  71. 71. Tian L, Li J, Bi W, Zuo S, Li L, Li W, et al. Effects of waterlogging stress at different growth stages on the photosynthetic characteristics and grain yield of spring maize (Zea mays L.) Under field conditions. Agric Water Manag. 2019;218:250–58. https://doi.org/10.1016/j.agwat.2019.03.054
  72. 72. Li P, Lin J, Zhu M, Zuo H, Shen Y, Li J, et al. Variations of stomata development in tea plant (Camellia sinensis) leaves in different light and temperature environments and genetic backgrounds. Hortic Res. 2023;10(2):278. https://doi.org/10.1093/hr/uhac278
  73. 73. Rai GK, Khanday DM, Choudhary SM, Kumar P, Kumari S, Martínez-Andújar C, et al. Unlocking nature’s stress buster: Abscisic acid’s crucial role in defending plants against abiotic stress. Plant Stress. 2024;11:100359. https://doi.org/10.1016/j.stress.2024.100359
  74. 74. Zhao Y, Zhang W, Abou-Elwafa SF, Shabala S, Xu L. Understanding a mechanistic basis of ABA involvement in plant adaptation to soil flooding: the current standing. Plants. 2021;10(10):1982. https://doi.org/10.3390/plants10101982
  75. 75. De Ollas C, González-Guzmán M, Pitarch Z, Matus JT, Candela H, Rambla JL, et al. Identification of ABA-mediated genetic and metabolic responses to soil flooding in tomato (Solanum lycopersicum L. Mill). Front Plant Sci. 2021;12:613059. https://doi.org/10.3389/fpls.2021.613059
  76. 76. Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. Role of proline under changing environments: a review. Plant Signal Behav. 2012;7(11):1456–66. https://doi.org/10.4161/psb.21949
  77. 77. Sorkheh K, Shiran B, Khodambashi M, Rouhi V, Mosavei S, Sofo A. Exogenous proline alleviates the effects of H2O2-induced oxidative stress in wild almond species. Russ J Plant Physiol. 2012;59(6):788–98. https://doi.org/10.1134/S1021443712060167
  78. 78. Ying Z, Fu S, Yang Y. Signaling and scavenging: unraveling the complex network of antioxidant enzyme regulation in plant cold adaptation. Plant Stress. 2025;16:100833. https://doi.org/10.1016/j.stress.2025.100833
  79. 79. Zheng Y, Cabassa-Hourton C, Planchais S, Crilat E, Clément G, Dacher M, et al. Pyrroline-5-carboxylate dehydrogenase is an essential enzyme for proline dehydrogenase function during dark-induced senescence in Arabidopsis thaliana. Plant Cell Environ. 2023;46(3):901–17. https://doi.org/10.1111/pce.14529
  80. 80. Yang WC, Lin KH, Wu CW, Chang YJ, Chang YS. Effects of waterlogging with different water resources on plant growth and tolerance capacity of four herbaceous flowers in a Bioretention Basin. Water. 2020;12(6):1619. https://doi.org/10.3390/w12061619
  81. 81. Kosma DK, Bourdenx B, Bernard A, Parsons EP, Lü S, Joubès J, et al. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol. 2009;151(4):1918–29. https://doi.org/10.1104/pp.109.141911
  82. 82. Broun P, Poindexter P, Osborne E, Jiang CZ, Riechmann JL. WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA. 2004;101(13):4706–11. https://doi.org/10.1073/pnas.0305574101
  83. 83. Mo L, Yao X, Tang H, Li Y, Jiao Y, He Y, et al. Genome-wide investigation and functional analysis reveal that CsKCS3 and CsKCS18 are required for tea cuticle wax formation. Foods. 2023;12(10):2011. https://doi.org/10.3390/foods12102011
  84. 84. Dong F, Hu J, Shi Y, Liu M, Zhang Q, Ruan J. Effects of nitrogen supply on flavonol glycoside biosynthesis and accumulation in tea leaves (Camellia sinensis). Plant Physiol Biochem. 2019;138:48–57. https://doi.org/10.1016/j.plaphy.2019.02.017
  85. 85. Gu H, Wang Y, Xie H, Qiu C, Zhang S, Xiao J, et al. Drought stress triggers proteomic changes involving lignin, flavonoids and fatty acids in tea plants. Sci Rep. 2020;10(1). https://doi.org/10.1038/s41598-020-72596-1
  86. 86. Rahimi M, Kordrostami M, Mohamadhasani F, Chaeikar SS. Antioxidant gene expression analysis and evaluation of total phenol content and oxygen-scavenging system in tea accessions under normal and drought stress conditions. BMC Plant Biol. 2021;21(1). https://doi.org/10.1186/s12870-021-03275-0
  87. 87. Luo J, Yu W, Xiao Y, Zhang Y, Peng F. Strawberry FaSnRK1α regulates anaerobic respiratory metabolism under waterlogging. Int J Mol Sci. 2022;23(9):4914. https://doi.org/10.3390/ijms23094914
  88. 88. Gao M, Gai C, Li X, Feng X, Lai R, Song Y, et al. Waterlogging tolerance of Actinidia valvata dunn is associated with high activities of pyruvate decarboxylase, alcohol dehydrogenase and antioxidant enzymes. Plants. 2023;12(15):2872. https://doi.org/10.3390/plants12152872
  89. 89. Langaroudi IK, Piri S, Chaeikar SS, Salehi B. Evaluating drought stress tolerance in different Camellia sinensis L. cultivars and effect of melatonin on strengthening antioxidant system. Sci Hort. 2023;307:111517. https://doi.org/10.1016/j.scienta.2022.111517
  90. 90. Upadhyaya H, Panda SK, Dutta BK. Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery. Acta Physiol Plant. 2008;30(4):457–68. https://doi.org/10.1007/s11738-008-0143-9
  91. 91. Cheruiyot EK, Mumera LM, Ng’etich WK, Hassanali A, Wachira FN. Polyphenols as potential indicators for drought tolerance in tea (Camellia sinensis L.). Biosci Biotechnol Biochem. 2007;71(9):2190–97. https://doi.org/10.1271/bbb.70156
  92. 92. Wang LY, Wei K, Jiang YW, Cheng H, Zhou J, He W, et al. Seasonal climate effects on flavanols and purine alkaloids of tea (Camellia sinensis L.). Eur Food Res Technol. 2011;233(6):1049–55. https://doi.org/10.1007/s00217-011-1588-4
  93. 93. Tyler BM. Molecular basis of recognition between Phytophthora pathogens and their hosts. Annu Rev Phytopathol. 2002;40(1):137–67. https://doi.org/10.1146/annurev.phyto.40.120601.125310
  94. 94. Browne GT, Mircetich SM. Effects of flood duration on the development of Phytophthora root and crown rots of apple. Phytopathol. 1988;78(6):846. https://doi.org/10.1094/phyto-78-846
  95. 95. Stone C, Chesnut K, Penman T, Nichols D. Waterlogging increases the infestation level of the pest psyllid Creiis lituratus on Eucalyptus dunnii. Aust For. 2010;73(2):98–105. https://doi.org/10.1080/00049158.2010
  96. 96. Shilpa S, J. S. M, Rakesh G, B. S, Joseph J, H. P. M, et al. Deciphering the role of polyphenol in defence mechanism against tea mosquito bug (Helopeltis theivora Waterhouse.) in cocoa (Theobroma cocoa L.). PLoS ONE. 2022;17(10):e0271432. https://doi.org/10.1371/journal.pone.0271432
  97. 97. Sireesha U, Borah R, Ramdam DS, Modak B, Pradhan B. Review on destructive pest tea mosquito bug, Helopeltis theivora of tea (Camellia sinensis). Int J Entomol Res. 2020;5(6):222–28. Availabe from: https://www.entomologyjournals.com/assets/archives/2020/vol5issue6/5-6-24-632.pdf
  98. 98. Gu H, Li J, Qiao D, Li M, Yao Y, Xie H, et al. A defensive pathway from NAC and TCP transcription factors activates a BAHD acyltransferase for (Z)-3-hexenyl acetate biosynthesis to resist herbivore in tea plant (Camellia sinensis). New Phytol. 2025;245(3):1232–48. https://doi.org/10.1111/nph.20283
  99. 99. Wang S, Gu H, Chen S, Li Y, Shen J, Wang Y, et al. Proteomics and phosphoproteomics reveal the different drought-responsive mechanisms of priming with (Z)-3-hexenyl acetate in two tea cultivars. J Proteomics. 2023;289:105010. https://doi.org/10.1016/j.jprot.2023.105010
  100. 100. Arefin MR, Hossain MI. Present status and future prospects of tea production and research on varietal improvement in Bangladesh. Turkish J Agric Food Sci Technol. 2022;10(12):2324–33. https://doi.org/10.24925/turjaf.v10i12.2324-2333.5259
  101. 101. Lebedev VT, Lebedeva TN, Chernodubov A, Shestibratov KA. Genomic selection for forest tree improvement: methods, achievements and perspectives. Forests. 2020;11(11):1190–100. https://doi.org/10.3390/f11111190
  102. 102. Chen L, Chen JD, editors. The tea plant genome. Singapore: Springer Nature; 2024. https://doi.org/10.1007/978-981-97-0680-8
  103. 103. White TL, Adams WT, Neale DB. Phenotypic mass selection – genetic gain, choice of traits and indirect response. CABI Publisher; 2007. https://doi.org/10.1079/9781845932855.0329
  104. 104. Chen L, Zhou ZX, Yang YJ. Genetic improvement and breeding of tea plant (Camellia sinensis) in China: from individual selection to hybridization and molecular breeding. Euphytica. 2006;154(1-2):239–48. https://doi.org/10.1007/s10681-006-9292-3
  105. 105. Kamunya SM, Wachira FN, Pathak RS, Muoki RC, Sharma RK. Tea Improvement in Kenya. In: Chen L, Apostolides Z, Chen ZM, editors. Global Tea Breeding. Berlin, Heidelberg: Springer; 2012. p. 177–226. https://doi.org/10.1007/978-3-642-31878-8_5
  106. 106. Muliadi A, Effendi R, Azrai dan M. Tolerance level of several hybrid maize genotypes to waterlogging stress. IOP Conf Ser: Earth Environ Sci. 2020;484(1):012002–12. https://doi.org/10.1088/1755-1315/484/1/012002
  107. 107. Belliappa SH, Bomma N, Pranati J, Soregaon CD, Hingane AJ, Basavaraj PS, et al. Breeding for water-logging tolerance in pigeon pea: current status and future prospects. CABI Agric Biosci. 2024;5(1). https://doi.org/10.1186/s43170-024-00299-y
  108. 108. Zhao Z, Qin T, Zheng H, Guan Y, Gu W, Wang H, et al. Mutation of ZmDIR5 reduces maize tolerance to waterlogging, salinity and drought. Plants. 2025;14(5):785–95. https://doi.org/10.3390/plants14050785
  109. 109. Ma JQ, Kamunya SM, Yamaguchi S, Ranatunga MAB, Chen L. Classic genetics and traditional breeding of tea plant. In: Chen L, Chen JD, editors. The tea plant genome. Singapore: Springer; 2024. p. 79–120. https://doi.org/10.1007/978-981-97-0680-8_5
  110. 110. Hembree WG, Ranney TG, Jackson BE, Weathington M. Cytogenetics, Ploidy and Genome Sizes of Camellia and Related Genera. Hortic Sci. 2019;54(7):1124–42. https://doi.org/10.21273/hortsci13923-19
  111. 111. Dai X, Shen L. Advances and trends in omics technology development. Front Med. 2022;9:911861. https://doi.org/10.3389/fmed.2022.911861
  112. 112. Naqvi RZ, Mahmood MA, Mansoor S, Amin I, Asif M. Omics-driven exploration and mining of key functional genes for the improvement of food and fiber crops. Front Plant Sci. 2024;14:1273859. https://doi.org/10.3389/fpls.2023.1273859
  113. 113. Raza A, Bashir S, Khare T, Karikari B, Copeland RGR, Jamla M, et al. Temperature-smart plants: a new horizon with omics-driven plant breeding. Physiol Plant. 2024;176(1):e14188. https://doi.org/10.1111/ppl.14188
  114. 114. Zhang H, Xie Z, Tu X, Liu A, Chen J, He Y, et al. Morphological and proteomic study of waterlogging tolerance in cotton. Sci Rep. 2024;14(1):14550. https://doi.org/10.1038/s41598-024-64322-y
  115. 115. Komatsu S, Kuji R, Nanjo Y, Hiraga S, Furukawa K. Comprehensive analysis of endoplasmic reticulum-enriched fraction in root tips of soybean under flooding stress using proteomics techniques. J Proteomics. 2012;77:531–60. https://doi.org/10.1016/j.jprot.2012.09.032
  116. 116. Zaman S, Shen J, Wang S, Song D, Wang H, Ding S, et al. Effect of shading on physiological attributes and proteomic analysis of tea during low temperatures. Plants. 2023;13(1):63. https://doi.org/10.3390/plants13010063
  117. 117. Li JW, Li H, Liu ZW, Wang YX, Chen Y, Yang N, et al. Molecular markers in tea plant (Camellia sinensis): Applications to evolution, genetic identification and molecular breeding. Plant Physiol Biochem. 2023;198:107704–14. https://doi.org/10.1016/j.plaphy.2023.107704
  118. 118. Kamunya SM, Wachira FN, Pathak RS, Korir R, Sharma V, Kumar R, et al. Genomic mapping and testing for quantitative trait loci in tea (Camellia sinensis (L.) O. Kuntze). Tree Genet Genomes. 2010;6(6):915–29. https://doi.org/10.1007/s11295-010-0301-2
  119. 119. Karunarathna KHT, Mewan KM, Weerasena OVDSJ, Perera N, Edirisinghe ENU. A functional molecular marker for detecting blister blight disease resistance in tea (Camellia sinensis L.). Plant Cell Rep. 2020;40(2):351–59. https://doi.org/10.1007/s00299-020-02637-6
  120. 120. Bali S, Raina SN, Bhat V, Aggarwal RK, Goel S. Development of a set of genomic microsatellite markers in tea (Camellia L.) (Camelliaceae). Mol Breed. 2013;32(3):735–41. https://doi.org/10.1007/s11032-013-9902-4
  121. 121. Wang Z, Huang R, Moon DG, Ercisli S, Chen L. Achievements and prospects of QTL mapping and beneficial genes and alleles mining for important quality and agronomic traits in tea plant (Camellia sinensis). Bev Plant Res. 2023;3(1):1–12. https://doi.org/10.48130/bpr-2023-0022
  122. 122. Jiang CK, Ma JQ, Liu YF, Chen JD, Ni DJ, Chen L. Identification and distribution of a single nucleotide polymorphism responsible for the catechin content in tea plants. Hortic Res. 2020;7(1). https://doi.org/10.1038/s41438-020-0247-y
  123. 123. Ahmed F, Rafii MY, Ismail MR, Juraimi AS, Rahim HA, Asfaliza R, et al. Waterlogging tolerance of crops: breeding, mechanism of tolerance, molecular approaches and future prospects. Biomed Res Int. 2013:1–10. https://doi.org/10.1155/2013/963525
  124. 124. Iacona C, Cirilli M, Zega A, Frioni E, Silvestri C, Muleo R. A somaclonal myrobalan rootstock increases waterlogging tolerance to peach cultivar in controlled conditions. Sci Hortic. 2013;156:1–8. https://doi.org/10.1016/j.scienta.2013.03.014
  125. 125. Thomas J, Vijayan D, Joshi SD, Lopez SJ, Kumar RR. Genetic integrity of somaclonal variants in tea (Camellia sinensis (L.) O Kuntze) as revealed by inter simple sequence repeats. J Biotechnol. 2005;123(2):149–54. https://doi.org/10.1016/j.jbiotec.2005.11.005
  126. 126. Eminoğlu A, İzmirli Şg, Beriş Fş, Dinçer D, Yazici K. Detection of somaclonal variation in tissue-cultured Turkish tea genotypes using SSR markers. In: 7th International Anatolian agriculture, food, environment and biology congress. Turkey: Turkish Science and Technology Publishing; 2024. p. 85.
  127. 127. Singh HR, Hazarika P, Agarwala N, Bhattacharyya N, Bhagawati P, Gohain B, et al. Transgenic tea over-expressing Solanum tuberosum Endo-1,3-beta-d-glucanase gene conferred resistance against blister blight disease. Plant Mol Biol Rep. 2018;36(1):107–22. https://doi.org/10.1007/s11105-017-1063-x
  128. 128. Ma H, Liu N, Sun X, Zhu M, Mao T, Huang S, et al. Establishment of an efficient transformation system and its application in regulatory mechanism analysis of biological macromolecules in tea plants. Int J Biol Macromol. 2023;244:125372–82. https://doi.org/10.1016/j.ijbiomac.2023.125372
  129. 129. Saini U, Kaur D, Bhattacharya A, Kumar S, Singh RD, Ahuja PS. Optimising parameters for biolistic gun-mediated genetic transformation of tea [Camellia sinensis (L.) O. Kuntze]. J Hortic Sci Biotech. 2012;87(6):605–12. https://doi.org/10.1080/14620316.2012.11512919
  130. 130. Mohanpuria P, Kumar V, Ahuja PS, Yadav SK. Agrobacterium-mediated silencing of caffeine synthesis through root transformation in Camellia sinensis L. Mol Biotechnol. 2010;48(3):235–43. https://doi.org/10.1007/s12033-010-9364-4
  131. 131. Tian H, Fan G, Xiong X, Wang H, Zhang S, Geng G. Characterization and transformation of the CabHLH18 gene from hot pepper to enhance waterlogging tolerance. Front Plant Sci. 2024;14. https://doi.org/10.3389/fpls.2023.1285198
  132. 132. Chiang CM, Chen LFO, Shih SW, Lin KH. Expression of eggplant ascorbate peroxidase increases the tolerance of transgenic rice plants to flooding stress. J Plant Biochem Biotech. 2014;24(3):257–67. https://doi.org/10.1007/s13562-014-0265-7
  133. 133. Yuwei T, Liping L, Ruoxian W, Yuhong C, Zhonghua L, Shuoqian L. Development of a CRISPR/Cas9 constructed for genome editing of caffeine synthase in Camellia sinensis. J Tea Sci. 2016;36(4):414–26. (in Chinese with English summary)
  134. 134. Huang J, Chen HM. CRISPR revolution: precision breeding for enhanced tea quality and disease resistance. J Tea Sci Res. 2024;14(3):160–68. https://doi.org/10.5376/jtsr.2024.14.0015
  135. 135. Nivetha DK, Manikanda BN, Shobhana VG, Ehab AAS, Ramya SN, Dinesh KG. Exploring pioneering efforts in tea breeding and genetic transformation and designing driving innovative strategies for better brewing. Plant Sci Today. 2024;11(4):1723–38. https://doi.org/10.14719/pst.3543

Downloads

Download data is not yet available.